解决问题的策略(画图)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“解决问题的策略画图法”。
解决问题的策略(画图)
本设计荣获泰州市“解决问题策略”专题研讨教学设计海选二等奖
泰州鼓楼路小学 肖网兰
【教学内容】教材第89页的例题、“试一试”和第90页的“想想做做”。【教学目标】
1、使学生在解决有关面积计算的实际问题的过程中,学会用画直观图的方法整理有关信息,能借助所画示意图分析实际问题中的数量关系,确定解决实际问题的正确思路。
2、使学生在对解决实际问题过程的不断反思中,感受用画示意图的方法整理信息,对于解决问题的价值,体会到画图整理信息是解决问题的一种常用策略。
3、使学生进一步积累解决实际问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。【教学重、难点】
重点:体验策略的价值,会根据题意画出示意图。
难点:借助画图的策略解决面积计算的实际问题。【教学理念】
通过尝试画图、指导画法、借助示意图理解题意、体会画图的优点、借助画图解决一系列实际问题等活动,帮助学生切实感受画图策略在解决实际问题中的作用,引导 学生结合示意图探索并理解解决问题的思路,突出解决问题的“中间问题”。在深入钻研教材的基础上,创新使用教材,既体现“以本为本”的教学思想,又根据学 生的实际情况活用例题。在强调合作、交流的同时,始终把独立思考作为学生学习的主要方式,既重视知识技能训练,又注重发展数学思考。
【教学过程】
一、复习引新,学习画图
1、基本练习。
指名口答长方形的面积和宽。
长(米)宽(米)面积(平方米)9 8 ? 8 ? 48 ? 5 30(学生口答后直接追问:你是怎么算的?)【设计意图:简要的练习,唤起学生已有的知识经验,为下面运用旧知解决实际问题提供支撑。】
2、引新。
(下面我们一起来看这个长方形,仔细观察它发生了什么变化?)
课件演示长增加,让学生分别求出增加的面积、原来的宽和原来的面积。【设计意图:从改变长方形入手,一方面让学生直观看出把边增加的画图的过程和基本方法,另一方面分散例题的难点,引导学生有序地思考,体会思考方法。】
指出:把长方形微微改变一下,就牵引出一系列问题。象这样把一个长方形的长或宽增加,你会画出图形吗?
出示长方形纸片贴在黑板上,如果长增加了,宽不变,你能比划变化后的图形吗?
学生比划,后贴在黑板上。如果长减少,宽不变呢?
3、练习画图。(发练习纸)
(1)画增加图形。(长 12 米,宽 5 米 的长方形,长增加3米)
问题:什么没有变?(宽不变)什么变了?怎样变的?(长增加 3 米)
问题:还有什么也增加了?面积增加了多少?(面积就增加了 15 平方米)。怎样算的?增加的面积怎么只要一步就求出来了?
(2)画减少图形。(长 60 厘米,宽 50 厘米 的长方形,宽减少 5 厘米)
问题:什么没有变?什么变了?怎样变的?长不变,宽减少 5 厘米,面积减少了多少?(面积就减少了 300 平方厘米)。怎么减少的面积也只要一步就求出来了? 【设计意图:“画图”对学生而言是个难点,学生从未接触过这样的画法。因此让学生练习画“增加”或“减少”的基本图形是有必要的,也是为新知的学习作好铺垫。并注意在交流、对比、说理中让学生体会到画图也要考虑到合理性,从细微处培养学生科学、严谨的学习态度和学习习惯。】
二、图文比较,体验策略
听录音:第一遍让学生复述题目
第二遍(提要求)请用自己的方法将条件和问题整理清楚 展示学生记录的数学信息。学生可能:列表,摘要,画图
比较几种方法:(画图)这位同学不但动作快,能将题意表达得更清楚。
谈话:根据题目中的条件和问题画图,也是一种常用的解决问题的策略。(板书:解决问题的策略——画图)那么,你能画出这道题的示意图吗?
想一想,这个花圃的示意图应该怎样画?同桌可以互相讨论讨论,然后尝试在本子上画出示意图。(请拿出每人手中画有长方形的白纸)
反馈:你是怎样画图整理题目中的已知条件和所求问题的? 有选择地展示学生画出的示意图,并让学生说一说是怎样想的,怎样画的。(先画原来长方形花圃长8米,画一条线段表示8米,没说宽,我们就大约画出宽(宽一般比长稍短些)出示第一个长方形,并标出长8米。然后画什么?长增加3米,出示增加的长,并标出3米,宽呢?宽变了没有?连接宽,面积怎么样了?就增加18平方米,是哪部分?出示增加的面积18平方米。)
提问:你觉得自己的示意图画得怎么样?需要修改吗?请需要修改的同学将自己画的图改一改。
师:好,仔细观察这个示意图,想一想,要求原来这个花圃的面积,首先要求出什么?(宽)你打算怎样求?
现在能解决这个问题了吗?(学生独立解答)
学生尝试列式计算,并指名板演。师:你是怎样想的呢?能不能结合示意图说一说? 师:做对了同学向老师挥挥手。其他同学赶紧订正一下。
【设计意图:对学生而言,例题中呈现的问题具有一定的挑战性,而画示意图可以把题目中的条件和问题之间的关系直观地展示出来,凸现了画图的优点。教学时,首先 出现纯文字的问题,在大多数学生感到有困难时,引导学生自主寻求解决问题的策略,并通过比较使画图的策略成为学生解决问题的自觉需要。】
2、活用例题。
(1)变“原来”为“现在”。
提问:假如不是求“原来”花圃的面积而是求“现在”花圃的面积,你会算吗?(指名口答)
(2)提问:还有其他的算法吗?(3)小结、比较。
指出:从图上,我们可以很清晰地看出:求现在花圃的面积有两种方法解答,可以看成两个长方形,用原来的面积加上增加的面积;也可以合起来看成一个大长方形,用总长度乘宽来计算。你有没有发现,无论是哪种方法,哪一个条件必须求出?
强调:增加的是长方形的长,宽没有变过,把这个不变的数求出来是有必要的。
【设计意图:这一环节我灵活使用了教材,根据教材安排的这节课所有习题的特点,考虑到大部分学生的知识水平,在求出“原来面积”的基础上让学生计算“现在的面 积”,给了学生一个思考的阶梯,既分散了解题难度,为学生独立练习“试一试”打下基础,又让学生体验到数学中条件不变、问题多变的特点。在交流中,比较得 出:不同的解题思路有同样的解题步骤,突出解决问题的“中间问题”,让学生初步感知解题的要领。】
(4)揭题。
提问:刚才解决的这道题我们是借助什么来理解题意的?(板书:画示意图)(简单解释什么是“示意图”。)
指出:画示意图也是一种解决问题的策略。(板书:解决问题的策略)这题和面积有关,用画图的策略有助于我们更清楚地理解题意。
【设计意图:在学生经历了例题的画图、解答过程之后,在回顾、小结的基础上很自然地揭示出课题,并简要解释什么叫“示意图”,帮助学生构建严谨的数学概念。】
3、强化练习。你能根据长方形的几个条件求出什么问题呢?(1)长增加2米,宽不变,面积增加10平方米。(2)宽增加4米,长不变,面积增加36平方米。(3)长减少5米,宽不变,面积减少30平方米。(4)宽减少3米,长不变,面积减少24平方米。(你能用画图的策略解答下一题吗?)
三、举一反三,巩固策略
1、练习“试一试”。
(1)出示题目,学生读题,了解从题目中了解的信息。
题目:小营村原来有一个宽20米的长方形鱼池。后来因扩建公路,鱼池的宽减少了5米,这样鱼池的面积就减少了150平方米。现在鱼池的面积是多少平方米?(2)师提问:从题中你了解到哪些数学信息? 你打算用什么策略来解决这个问题?(3)师:20米表示什么?5米表示什么?面积就减少了150平方米,应该画在哪里?拿出练习纸四人小组讨论一下,讨论好后完成示意图,在相应的位置标上数据。(学生各自在练习纸上画图)
(4)集体交流画的图,相互评议。师:谁来说说你是怎么画的?(5)师引导:要求现在鱼池的面积,必须知道哪些条件?你能独立的解答出来了吗?试一试。
(6)集体交流解法,并要求结合所列算式说说解决问题的思路。
师提问:完成了吗?谁来介绍一下你的思路?怎样列式?说说每步求的是什么?(师板书:150÷5=30 20-5=15 30×15=450)有没有不同的方法?你是怎么想的?(师板书:150÷5=30 30×20-150=450)师说明:两种方法都可以。
(7)比较反思:刚才两道题相比,有什么不同?它们在解题时有什么相同的地方?都用了什么策略来解决的?你觉得画示意图怎样?
指出:看来,把不变的条件求出来真的很关键,这也是解题时的小窍门。
【设计意图:这一环节的教学有别于例题。例题的教学采用的是“小步子”的探究步骤:画图、交流→独立列式计算→交流算法,而“试一试”则放手让学生独立画图并计算。并注意在交流中比较得出:不同的解题思路还是有同样的解题步骤,进一步突出解决问题的“中间问题”,提升解题要领。】
过渡:刚才的题目,有的是长已知,宽不知,要求出宽;有的是宽已知,长不知,要求出长。看看下面这题已知什么呢?
2、练习“想想做做”第1题。
师出示题目:下图是李镇小学的一块长方形试验田。如果这块试验田的长增加6米,或者宽增加4米,面积都比原来增加48平方米。你知道原来试验田的面积是多少平方米吗?(先在图上画一画,再解答)(1)指名读题。
师:你从题中了解到了哪些数学信息?(如果这块试验田的长增加6米,或者宽增加4米,面积都比原来增加48平方米。)
你们理解这句话的意思吗?那么,我们四人小组一起来讨论一下:
1、长、宽是怎样变化的?
2、怎样画示意图?讨论后自己画一画。师:谁来说说你们小组讨论的结果?你是怎样理解这句话的?(学生相互交流、补充)指出:这话实际就是“如果长增加6米,面积比原来增加48平方米;如果宽增加4米,面积也比原来增加48平方米。”
师:你能把这句话的意思表示在一个图上吗?试试看。(2)各自在练习纸上作图并解答。
师:好了吗?说说示意图怎么画?先„„再„„(3)集体交流,共同评议,老师板书。
师追问:根据哪些条件可以求原来长方形的长?根据哪些条件可以求原来长方形的宽?应该怎样列式?说说每步求出的是什么?(师相机板书:48÷4=12 48÷6=8 12×8=96)
(4)师:刚才我们连续解决了三个实际问题,你觉得哪题最有挑战?这么难的题为什么你们能很快就解决呢?谁帮的忙?你对示意图有什么想说的?喜欢画示意图来解决问题吗?
师:刚才的解决问题中,我们又感受到了示意图的美妙作用。(5)小结:这题要求原来的面积,必须分别找出长和宽才能计算。假如只画长增加,只能求出宽;假如只画宽增加,只能求出长;必须把长和宽都画出来,才能求出原来的面积。
3、练习“想想做做”第2题。学习画图:
(1)出示题目,读题。
(2)提问:这里的长和宽是怎样增加的?
(3)你打算怎样画图,把你的想法和同桌说一说,再把图画出来。(4)交流学生所画的图。(估计大部分学生的画法同上)
不管增加了长还是宽或是都增加,最后得到的还应该是一个完整的长方形。(5)演示正确的画图过程。
(6)比较两题的不同,体会“或者”和“同时”的区别。
(7)指出:数学上其实很多时候考验的是语文水平,同样是增加,画法却不相同。所以,在画图时一定要看清题目,仔细分析。
【设计意图:这两题的作图对学生而言是难点,也是极其容易混淆的知识点。所以在教学时着重引导画图,淡化了计算过程。通过展示学生的作业,让学生自己感悟、分析、评价、说理。并把两题加以比较,让学生在比较中体会“或者”和“同时”的不同,从而加深理解题意,掌握画法。】 讨论解法:
(1)提问:增加的部分不是一个规则图形,不能直接计算。能不能想办法把它分成几个长方形来计算呢?
你能解答吗?四人小组合作完成,比比哪个小组最快,想得方法最多?(2)集体交流。
(交流时,让不同解法的小组说说解题思路,师演示示意图。对于这题有四种不同的解法,让学生感受解法的多样化。)
四、全课总结、拓展运用。
1、课堂总结。
提问:今天这节课涉及到的习题都和长方形的面积有关,在理解题意时采用了什么策略?画图的策略有什么优点?画图时要注意什么?
【设计意图:通过引导学生回顾所学内容,提出疑问,进行反思,帮助学生进一步体会画图的策略在解决实际问题过程中的作用,进一步强化解决问题的策略意识,进一步明确画图要领。】 指出:在示意上更直观、更清晰地看出条件与条件的关系,能帮助我们更有序的思考。在解题时要注意的是:因为长方形的面积=长×宽,一般情况下要分别找出长和宽才能计算。
2、自我评价。
提问:你对自己这节课的表现如何评价?
解决问题的策略——画图策略——教研活动理论学习整理交口县城关小学赵亚虹可能初次接触新课本的老师会说课本为何越改越麻烦呢?学生会做就行了,为何课本上要让学生画图呢?又浪......
课题:解决问题的策略(一)第 1 课时教学内容:苏教版四年级下册第48页——49页 教学目标:1.运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。......
解决问题的策略——画图教学目标:1.让学生在解决有关实际问题的过程中,学会用画图的方法整理信息,能借助所画的示意图分析实际问题的数量关系,确定解决问题的思路。2.让学生在对......
解决问题的策略说课稿一、教材分析:本课是画图策略第一课时,例l是一道典型的和差问题。教材在呈现例题后,出示线段图,并要求学生尝试根据题意把例题中的有关信息在线段图中填写......
《解决问题的策略----画图》教学设计一、教学内容:四年级下册第89-90页例题、“试一试”和“想想做做”。二、教学目标:(一)知识与技能使学生在具体的问题情境中产生画图的需求,......