余弦定理证明案例分析由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“余弦定理证明方法”。
余弦定理证明案例分析
秭归二中董建华
我今年教高一(3)、一(7)班两班数学,在证明余弦定理时,上午第二节在一(3)班上数学,在证明余弦定理时,我是这样上课的:
同学们,前一节课我们学习了正弦定理及其证,现在请同学们考虑这样一个问题,已知三角形的两边及夹角如何求夹角的对边。
即:在△ABC中,已知ACb,BCa,及C,求C。
请同学们思考后回答这个问题,同学们沉默了
三五分钟,开始相互讨论,并得出了如下解法:
过A作ADBC于D,是AD=ACsinCBCsinC,CDACcosbcosc,在RtABD中,AB2AD2BD2(bsinc)2(abcosc)2a2b22abcosc,用的是初中的知识,我们请同学们继续想,我们学了向量,能否用向量的知识加以证明呢?
表现出一片茫然,并开始画图分析,讨论终于得出
222ABAB(ACBC)(ACBC)AC2ACBCBCAC2|AC||BC|
2cos(180B)BCb22abcosBa2,即。c2a2b22abcosc 这样一个余弦定理证明下来,同学们分析、观察、讨论用了近30分钟。我觉得这样上课太浪费时间,这么简单的问题,花这么多时间去讨论。
于是我在一(7)班一上课就开门见山的说:“前面我们学习了正弦定理及其证明,这节课我们主要分析余弦定理,即:,a2b2c22bccosA,b2a2c22accosB,c2a2b22abcosC ”
现在我们来证明c2a2b22abcosC :
2证:ABACBCABAB=(ACBC)(AC
22AC2ACBCBCb22bacosca
2即:c2a2b22abcosc,同理可证其余两个,同学们听懂了没有,大家齐答听懂了。前后不过5 分钟左右的时间,我当时还感觉我讲得不错,反正只要学生听懂了就行。
结果一个星期后,有一个小测验,试卷上刚好有一题是用向量的方法证明余弦定理,成绩下来,一(3)班有41人做对了此题,一(7)班仅有7人做对了此题。两个平行班,一个老师教,方法不一样,效果却相差如此之大,我对此进行了案例反思。
反思案例:
1、定理的证明重在教师引导,放手让学生去发现、观察、分析得出结论,如采取注入式教师,虽老师一教学生能听懂,但毕竟不比自己亲手得出的东西印象深刻。
2、引导学生分析问题,表面上看浪费了许多时间,但教会了学生学习的方法,以后遇到许多类似的问题根本不需老师重复去教,学生自己会分析,所以从整体上节约了时间。
3、我在前一节课完全是以学生为主体,后一节课完全是以老师为主体,在课堂教学中,应将教师的主导作用将学生的主体作用表现出来,让教学效果达到更优化。
总之,通过两节课,效果的比较,使我认识到在课堂上要充分引导学生去分析、观察、发现、讨论、探究问题,让学生做课堂的演员,教师仅仅是节目的主持人,分工明确,一节课才是一节完整的课。
高中数学教学中的“情境 .问题.反思.应用” ----“余弦定理”教学案例分析作者: 王兵 发布日期:2007-11-1 摘要]: 辩证唯物主义认识论、现代数学观和建构主义教学观与学习观指......
余弦定理证明在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c勾股定理可知:AC²=AD²+DC²b²=(sinB*c)²+(a-cosB*c)²b²=......
用余弦定理证明((锦集12篇))由网友“摸鱼记录簿”投稿提供,下面就是小编给大家带来的用余弦定理证明,希望大家喜欢,可以帮助到有需要的朋友!篇1:用余弦定理证明 用余弦定理证明用余......
在△ABC中,设BC=a,AC=b,AB=c,试根据b,c,A来表示a。 分析:由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构造直角三角形,在直角三角形内通过边角关系作进一步的转化工......
怎么证明余弦定理证明余弦定理:因为过C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。又因为b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA......