第1篇:初三数学二次函数的图象和性质教案
初三数学二次函数的图象和性质教案
作为一名老师,通常需要准备好一份教案,教案是备课向课堂教学转化的关节点。如何把教案做到重点突出呢?下面是小编为大家收集的初三数学二次函数的图象和性质教案,仅供参考,希望能够帮助到大家。
教学目标:
1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。
3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。
教学重点:二次函数y=ax2的图象的作法和性质
教学难点:建立二次函数表达式与图象之间的联系
教学方法:自主探索,数形结合
教学建议:
利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。
教学过程:
一、认知准备:
1.正比例函数、一次函数、反比例函数的图象分别是什么?
2.画函数图象的方法和步骤是什么?(学生口答)
你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。
二、新授:
(一)动手实践:作二次函数y=x2和y=-x2的图象
(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)
(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)
1.你能描述该图象的形状吗?
2.该图象与x轴有公共点吗?如果有公共点坐标是什么?
3.当x<0时,随着x的增大,y如何变化?当x>0时呢?
4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?
5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。
(三)学生交流:
1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)
2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?
3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:
(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?
(2)两个图象关于哪个点对称?
(3)由y=x2的图象如何得到y=-x2的图象?
(四)动手做一做:
1.作出函数y=2 x2和y= -2 x2的图象
(同桌二人,南边作二次函数y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)
2.对照黑板图象,数形结合,研讨性质:
(1)你能说出二次函数y=2 x2具有哪些性质吗?
(2)你能说出二次函数y= -2 x2具有哪些性质吗?
(3)你能发现二次函数y=a x2的图象有什么性质吗?
(学生分小组活动,交流各自的发现)
3.师生归纳总结二次函数y=a x2的图象及性质:
(1)二次函数y=a x2的图象是一条抛物线
(2)性质
a:开口方向:a>0,抛物线开口向上,a〈 0,抛物线开口向下[
b:顶点坐标是(0,0)
c:对称轴是y轴
d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0
e:增减性:a>0时,在对称轴的左侧(X<0),y随x的`增大而减小,在对称轴的右侧(x>0),y随x的增大而增大,a〈0时,在对称轴的左侧(X<0),y随x的增大而增大,在对称轴的右侧(x>0),y随x的增大而减小。
4.应用:(1)说出二次函数y=1/3 x2和y= -5 x2有哪些性质
(2)说出二次函数y=4 x2和y= -1/4 x2有哪些相同点和不同点?
三、小结:
通过本节课学习,你有哪些收获?(学生小结)
1.会画二次函数y=a x2的图象,知道它的图象是一条抛物线
2.知道二次函数y=a x2的性质:
a:开口方向:a>0,抛物线开口向上,a〈0,抛物线开口向下
b:顶点坐标是(0,0)
c:对称轴是y轴
d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0
e:增减性:a>0时,在对称轴的左侧(X<0=,y随x的增大而减小,在对称轴的右侧(x>0),y随x的增大而增大,a〈0时,在对称轴的左侧(X<0),y随x的增大而增大,在对称轴的右侧(x>0),y随x的增大而减小。
第2篇:(教案)二次函数图象和性质复习教案
《二次函数的图象和性质》复习课教案
海洲初级中学 初三数学备课组
内容来源:初中九年级《数学(上册)》教科书 教学内容:二次函数图像与性质复习课时:两课时 教学目标:
1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。2.会利用二次函数的图象判断a、b、c的取值情况。
3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。教材分析:
二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网络体系,发展技能,归纳解题方法,让学生在练习中体会数形结合思想。学情分析
学生具有初步的、零散的关于二次函数的图象和性质的知识基础,但是还没有形成系统的知识体系,缺乏解决问题有效的、系统的方法,解决问题办法单一,较难想到运用函数的图象解决问题。本节课针对班级学生特点采取小组合作进行教学,通过小组的交流、讨论和展示,提高学生学习的积极性和有效性。通过本节课的学习使学生把函数的图象和性质紧密联系在一起,掌握解决一类问题的常用方法。教学过程
一、旧知回顾
1、已知关于x的函数y=
2、已知函数y=-2x-2,化为y=a
+3x-4是二次函数,则a的取值范围是.+k的形式:
此抛物线的开口向,对称轴为,顶点坐标 ; 当x= 时,抛物线有最 值,最值为 ;
当x 时,y随x的增大而增大;当x 时,y随x的增大而减少。
3、二次函数y=-3的图象向右平移1个单位,再向上平移3个单位,所得到
抛物线的解析式为
4、若二次函数y=2x+m的图象与x轴有两个交点,则m的取值范围是
5、抛物线的顶点在(-1,-2)且又过(-2,-1),求该抛物线的解析式。
6、抛物线经过三点(0,-1)、(1,0)、(-1,2),求该抛物线的解析式。
思维导图:
二、例题精讲:
1、(2016.新疆)已知二次函数y=
+bx+c(a)的图
象如图所示,则下列结论中正确的是()A、a>0 B、c<0 C、3是方程a+bx+c=0的一个根
D、当x
2:二次函数图象过A,C,B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且OB=OC.(1)求C的坐标;
(2)求二次函数的解析式,并求出函数最大值。C
(3)一次函数的图象经过点C,B,求一次函数的解析式;
(4)根据图象,写出满足二次函数不小于一次函数值的x的取值范围;
(5)若该抛物线顶点为D,y轴上是否存在一点P,使得PA+PD最短?若存在,求出P点的坐标;
(6)若该抛物线顶点为D,x轴上是否存在一点P,使得PC+PD最短?若存在,求出P点的坐标;
三、教学反思
第3篇:二次函数的图象和性质教案
27.2.1 相似三角形的判定
(一)梅
一、教学目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.
2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).
3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.
二、重点、难点
1.重点:相似三角形的定义与三角形相似的预备定理. 2.难点:三角形相似的预备定理的应用. 3.难点的突破方法
(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,ABBCCA每个比的前
ABBC
第4篇:二次函数的图象和性质
二次函数的图象和性质(第一课时)教学案例
函数是中学数学学习的重要内容,函数概念通过坐标系中的曲线上点的坐标反映变量之间的对应关系。这种变化与对应的思想对于中学生来讲,学习起来非常困难。虽然,函数图像将函数的数量关系直观化、形象化,提供了数形结合地研究问题的重要方法,但在没有信息技术支持下的教学,研究函数图像对教师来讲也是较为困难的一件事。
二次函数教学时间约为 10课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量
第5篇:二次函数的图象和性质练习题
二次函数的图象和性质练习题
一.选择题
1.抛物线 的顶点坐标是( )
A.(0,1) B. (0,-1) C. (1,0) D. (-1,0)
2.抛物线 与 轴有两个交点,且开口向下,则 的取值范围分别是( )
A. B. C. D.
3.如图,小芳在某次投篮中,球的运动路线是抛物线y=-15x2+3.5的一部分,若命中篮
圈中心,则他与篮底的距离 是( )
A.3.5 B.4 C.4.5 D.4.6
4 .将抛物线平移后得到抛物线 ,平移的方法可以是( ) 第3题
A.向下平移 3个单位长度 B. 向 上平移3个单位长度
C.向下平移2个单位长度 D.向下平移2个单位长度
5.抛物线 的对称轴是( )
A.直线 B.直线 C. 轴 D.直线
6.抛物线 与 轴交于B,C两点,顶点为A,则 的周长为( )
A. B.
第6篇:二次函数及其图象和性质(学案)
二次函数及其图象和性质(学案)
学习内容:
1、二次函数的概念;
2、二次函数的图象;
3、二次函数的性质。
学习要求:
1、理解二次函数的概念,会用描点法画出二次函数的图象,理解二次函数与抛物线的有关概念
2、通过二次函数的图象,理解并掌握二次函数的性质,会判断二次函数的开口方向;会求顶点坐标,
会判顶点坐标,对称轴方程;会判断并求出最大值或最小值;会判断增减性,等等。
3、由图象能确定a、b、c、△的符号,及判定。
学习重点:
二次函数的图象和性质及运用。
学习难点:
二次函数的图象的画法以及理解y=a(x—h)2+h型抛物线是由抛物线y=ax2平移而得到的。
例题分析
第一阶梯
例1、在同一坐标系中画出下列二次函数的图象。
1、 2、y=3x2
3、 4、y=-3x2
提示:
以上四个二次函数我们在列表时首先在所列的表正中位置