弦切角的数学教案

精品范文 时间:2024-02-27 07:13:19 收藏本文下载本文

第1篇:弦切角的数学教案

弦切角的数学教案

弦切角的数学教案

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:弦切角定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一.

难点:弦切角定理的证明.因为在证明过程中包含了由“一般到特殊”的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点.

2、教学建议

(1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识;

(2)学习时应注意:(Ⅰ)弦切角的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的弦;(Ⅱ)在使用弦切角定理时,首先要根据图形准确找到弦切角和它们所夹弧上的圆周角;(Ⅲ)要注意弦切角定理的证明,体现了从特殊到一般的证明思路.

教学目标:

1、理解弦切角的概念;

2、掌握弦切角定理及推论,并会运用它们解决有关问题;

3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.

教学重点:弦切角定理及其应用是重点.

教学难点:弦切角定理的证明是难点.

教学活动设计:

(一)创设情境,以旧探新

1、复习:什么样的角是圆周角?

2、弦切角的概念:

电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A 旋转至与圆相切时,得∠BAE.

引导学生共同观察、分析∠BAE的特点:

(1)顶点在圆周上; (2)一边与圆相交; (3)一边与圆相切.

弦切角的定义:

顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

3、用反例图形剖析定义,揭示概念本质属性:

判断下列各图形中的角是不是弦切角,并说明理由:

以下各图中的角都不是弦切角.

图(1)中,缺少“顶点在圆上”的条件;

图(2)中,缺少“一边和圆相交”的条件;

图(3)中,缺少“一边和圆相切”的条件;

图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件.

通过以上分析,使全体学生明确:弦切角定义中的三个条件缺一不可。

(二)观察、猜想

1、观察:(电脑动画,使C点变动)

观察∠P与∠BAC的关系.

2、猜想:∠P=∠BAC

(三)类比联想、论证

1、首先让学生回忆联想:

(1)圆周角定理的证明采用了什么方法?

(2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?

2、分类:教师引导学生观察图形,当固定切线,让过切点的弦运动,可发现一个圆的弦切角有无数个.

如图.由此发现,弦切角可分为三类:

(1)圆心在角的外部;

(2)圆心在角的一边上;

(3)圆心在角的内部.

3、迁移圆周角定理的证明方法

先证明了特殊情况,在考虑圆心在弦切角的外部和内部两种情况.

组织学生讨论:怎样将一般情况的证明转化为特殊情况.

如图 (1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.

如图 (2),圆心O在∠CAB内,作⊙O的.直径AQ.连结PQ,则∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,

(在此基础上,给出证明,写出完整的证明过程)

回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完 全归纳、从而证明了上述猜想是正确的,得:

弦切角定理:弦切角等于它所夹的弧对的圆周角. 4.深化结论.

练习1 直线AB和圆相切于点P,PC,PD为弦,指出图中所有的弦切角以及它们所夹的弧.

练习2 如图,DE切⊙O于A,AB,AC是⊙O 的弦,若=,那么∠DAB和∠EAC是否相等?为什么?

分析:由于 和 分别是两个弦切角∠OAB和∠EAC所夹的弧.而 = .连结B,C,易证∠B=∠C.于是得到∠DAB=∠EAC.

由此得出:

推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.

(四)应用

例1如图,已知AB是⊙O的直径,AC是弦,直线CE和⊙O 切于点C,AD⊥CE,垂足为D

求证:AC平分∠BAD.

思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.

证明:(学生板书)

组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.

思路二,连结OC,由切线性质,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可证得结论。

思路三,过C作CF⊥AB,交⊙O于P,连结AF.由垂径定理可知∠1=∠3,又根据弦切角定理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.

练习题

1、如图,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=______度.

2、AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3:1,则夹劣弧的弦切角∠BAC=________

3、如图,经过⊙O上的点T的切线和弦AB的延长线相交于点C.

求证:∠ATC=∠TBC.

(此题为课本的练习题,证明方法较多,组织学生讨论,归纳证法.)

(五)归纳小结

教师组织学生归纳:

(1)这节课我们主要学习的知识;

(2)在学习过程中应用哪些重要的数学思想方法?

(六)作业:教材P13l习题7.4A组l(2),5,6,7题.

探究活动

一个角的顶点在圆上,它的度数等于它所夹的弧对的圆周角的度数,试探讨该角是否圆周角?若不是,请举出反例;若是圆周角,请给出证明.

提示:是圆周角(它是弦切角定理的逆命题).分三种情况证明(证明略).

第2篇:弦切角

弦切角

教学目标:

1、知识与技能 理解弦切角定义,掌握弦切角定理,会用弦切角定理进行计算和证明,理解定理证明。

2、过程与方法 培养直觉思维能力和发散性思维,提高思维的流畅性,发展创造性思维;初步学会用“从特殊到一般”的思想方法发现问题和处理问题,提高数学学习能力。

3、情感态度价值观 初步树立用辩证唯物主义观点分析问题、认识问题的思想观念;培养学生勇于探索、敢于创新精神与推理论证能力,形成良好的学习习惯。教学重点:

正确理解弦切角定理,这一定理在以后的证明中经常使用. 教学难点:

弦切角定理的证明.学生不太容易想到把弦切角的(2)(3)种情况“转化”为(1).教学中可提醒学生注意圆周角定理的证明方法. 教学内容:

一、新课引入:

我们已经学过圆心角和圆周角,本课我们用同样的思想方法来学习弦切角.

二、新课讲解: 实际上,我们把圆周角∠BAC的一边AB绕顶点A旋转到与圆相切时,所成的∠BAC称为弦切角.从数学的角度看,弦切角能分为几大类?请同学们打开练习本,画一画.

学生动手画,教师巡视,当所有学生都把三种情形的弦切角画出来时,教师再按直角、锐角、钝角顺序分为图形(1)、(2)、(3).教师指导学生给出弦切角的定义,并就图(1)中的弦切角猜想弦切角定理.指导学生完成证明。

1.定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.

2.弦切角定理:弦切角等于它所夹的弧对的圆周角. 弦切角定理证明:

已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:

(1)圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角

(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D, 若在优弧m所对的劣弧上有一点E 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴ ∠CEA=∠CAB

(3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么 ∠CDA+∠CAD=∠CAB+∠CAD=90° ∴∠CDA=∠CAB

三、小结 ①弦切角的定义 ②弦切角定理的内容 ③弦切角定理的证明过程

四、练习

如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.五、作业

如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长.

第3篇:弦切角

弦切角、切割线定理、相交弦定理

【知识点】

(一)弦切角

1.定义

顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角。

2.定理

弦切角等于它所夹的弧对的圆周角。

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

3.值得注意的问题

(1)弦切角必须具备三个条件:①顶点在圆上(切点);②一边和圆相切;③另一边和圆相交(弦),三者缺一不可。

(2)定理中的“弦切角所夹的弧”,是指构成弦切角的弦所对的夹在弦切角内部的一条弧。

(3)弦切角也可以看作圆周角的一边绕顶点旋转到与圆相切时所成的角。

4.弦切角定理的运用

解决有关证明角相等、比例式、等积式的问题。

(二)切割线

1.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的。

2.切割线定理推论(割线定理):从圆外一点引圆的两条割线,这一点

未完,继续阅读 >

第4篇:弦切角

弦切角

弦切角定义:顶点在圆上,一边和圆相交,一边和圆相切的角叫做弦

切角。(弦切角就是切线与弦所夹的角)

弦切角定理

弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明:证明一:设圆心为O,连接OC,OB,。∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:

(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CA

未完,继续阅读 >

第5篇:弦切角定理

高二数学(文)选修4-1编写:杨社锋编号:07-08

教研组长:贾敏 教研室主任:田土娟校审:王宏奇

弦切角定理

学习目标:理解弦切角定理的推导过程,掌握切线长定理、弦切角定理的内容及其推论 学习重点:切线长定理及弦切角定理

学习难点:切线长定理、弦切角定理及其推论的应用

一、基础知识回顾:

1切线的判定定理及性质:

2.切线长定理

切线长:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长

以上结论叫做切线长定理:_______________________________________________________ ____________________________________________________

注意:切线长与切线的区别:

_______________________

未完,继续阅读 >

下载弦切角的数学教案word格式文档
下载弦切角的数学教案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文