第1篇:追及应用题及答案
追及应用题及答案
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】
1.追及时间=追及路程÷(快速-慢速)
2.追及路程=(快速-慢速)×追及时间
【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
追及应用题:
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解:(1)劣马先走12天能走多少千米? 75×12=900(千米)
(2)好马几天追上劣马? 900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]
=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解:敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-16)]千米,甲乙两地相距60千米。由此推知
追及时间=[10×(22-16)+60]÷(30-10)
=120÷20
=6(小时)
答:解放军在6小时后可以追上敌人。
例4 :一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解:这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为 (48+40)×4=352(千米)
列成综合算式 (48+40)×[16×2÷(48-40)]
=88×4
=352(千米)
答:甲乙两站的距离是352千米。
例5:兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,
那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的.距离为 90×12-180=900(米)
答:家离学校有900米远。
例6 :孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
解:手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。
所以
步行1千米所用时间为 1÷[9-(10-5)]
=0.25(小时)
=15(分钟)
跑步1千米所用时间为 15-[9-(10-5)]=11(分钟)
跑步速度为每小时 1÷11/60=5.5(千米)
答:孙亮跑步速度为每小时 5.5千米。
小知识:
解应用题时要找出题中数量间的对应关系。如解平均数应用题需找出“总数量”所对应的“总份数”;解倍数应用题需找出具体数量和倍数的对应关系;解分数应用题需找出数量与分率的对应关系。因此,找出题中“对应”的数量关系,是解答应用题的基本方法之一。
用对应的观点,发现应用题数量之间的对应关系,通过对应数量求未知数的解题方法,称为对应法。
解答复杂的分数应用题,关键就在于找出具体数量与分率的对应关系。
第2篇:追及问题应用题及答案
追及问题应用题及答案
追及问题绕来绕去,很容易让人觉得头晕。今天小编为大家准备的内容是追及问题应用题及答案,帮助大家学好这个知识点。
追及问题应用题及答案1
1、 甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?
18÷(14-5)=2(小时)
2、哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?
(50×10)÷(70-50)=25(分钟)
3、 小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16
千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?
(16-5)×2=22(千米)
4、 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?
40×5÷(90-40)=4(小时)……追及时间
40×(5+4)=360(千米)……汽车速度×汽车时间=汽车路程
360×2=720(千米)……全程
5、 一列慢车在早晨6:30以每小时40千米的速度由甲城开往乙城,另一列快车在早晨7:30以每小时56千米的速度也由甲城开往乙城。铁路部门规定,向相同方向的两列火车之间的距离不能小于8千米。那么,这列慢车最迟应该在什么时候停车让快车超过?
追及路程:(7:30-6:30)×40=40(千米) 40-8=32(千米)
32÷(56-40)=2(小时)……追及时间
7:30+2小时=9点30分
6、 小云以每分钟40米的速度从家去商店买东西,5分钟后,小英去追小云,结果在离家600米的地方追上小云,小英的速度是多少?
40×5=200(米)……实际追及路程
每5分钟行200米,600-200=400(米),小云又走了10分钟,其实这10分钟就是追及时间。200÷10=20(速度差)40+20=60(米)……小英的速度
7、 一队中学生到某地进行军事训练,他们以每小时5千米的'速度前进,走了6小时后,学校派秦老师骑自行车以每小时15千米的速度追赶学生队伍,传达学校通知。秦老师几小时可追上队伍?追上时队伍已经行了多少路?
5×6=30(千米)……秦老师出发时队伍已经行的路程,也就是追及路程。
30÷(15-5)=3(小时)……追及时间
5×(6+3)=45(千米)……队伍总走的路程
8、 小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘记在家里,立即骑自行车以每分钟280米的速度去 小明,那么爸爸出发后几分钟追上小明?
实际追及距离是 70×12=840(米)
840÷(280-70)=4(分钟)
9、 一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间,小强第一次追上小星?
400÷(300-250)=8(分钟)
10、在一条长300米的环形跑道上,甲乙两人同时从一起点出发,同向而跑,甲每秒跑9米,乙每秒跑7米,现在乙在甲后面100米,问:甲追上乙要多少时间?
(300-100)÷(9-7)=100(秒)
追及问题应用题及答案2
1、 小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。已知小李的速度是小王速度的3倍,则小李出发后多少时间能追上小王?
2、 甲每分钟行80米,乙每分钟行50米,在下午1:30分时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在几点的时候追上乙?
3、某学校组织学生去长城春游,租用了一辆大客车,从学校到长城相距150千米。大客车和学校的一辆小汽车同时从学校出发,当小汽车到长城时,大客车还有30千米。已知大客车每小时行60千米,则小汽车比大客车快多少千米?
4、甲乙两人从周长为800米的正方形水池相对的两个顶点同时出发逆时针行走,乙在前,甲在后。甲每分钟走50米,乙每分钟走46米,出发多长时间甲和乙在同一点上?
5、甲、乙两人同时从东村出发到西村,甲的速度是每小时6千米,乙的速度是每小时4千米,甲中途有事休息了2小时,结果比乙迟到了1个小时,求两村相隔的距离?
6、龟兔赛跑,同时出发,全程7000米。龟以每分钟30米的速度爬行,兔每分钟跑330米,兔跑了10分钟后停下来睡觉了200分钟,醒来后立即以原速往前跑,当兔追上龟时,离中点是多少米?
7、学校组织四年级学生春游,包了两辆大面包车从学校出发。第一辆车速每小时30千米,上午7:00出发,第二辆晚开1小时,速度是每小时40千米。结果两辆车同时到达,问春游的景区离学校多远?
8、甲、乙两人同时从A地去B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?
追及问题应用题及答案3
问题: 兄弟两人由家向学校出发,弟弟步行每分钟走50米,哥哥骑自行车每分钟行200米,弟弟走了15分钟后,哥哥骑车离家几分钟后能追上弟弟
解析: 这是一道简单的追及问题,基本关系式为:追及距离=速度差x追及时间。由题意,弟弟前12分钟走的路程就是追及过程中两人的距离,即50×12=600(米),速度差为200-50=150(米/分),所以追及时间为:600÷150=4(分钟)
答案: 50×12÷(200-50)=4(分钟)
第3篇:百分数应用题及答案
百分数应用题及答案
百分数是数学学习中的重点,那么相关的应用题又是怎么出题的呢?下面是小编推荐给大家的百分数的应用题及答案,希望大家有所收获。
百分数应用题及答案1
1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?
2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?
3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?
4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?
5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出
第4篇:等比数列应用题及答案
等比数列应用题及答案
想要在考试中考出理想成绩,那么平常的练习就一定要认真去对待。下面是小编整理收集的等比数列应用题及答案,欢迎阅读!
一、选择题
1.等比数列{an}中,a1=2,q=3,则an等于()
A.6 B.32n-1
C.23n-1 D.6n
答案:C
2.在等比数列{an}中,若a2=3,a5=24,则数列{an}的通项公式为()
A.322n B.322n-2
C.32n-2 D.32n-1
解析:选C.∵q3=a5a2=243=8,q=2,而a1=a2q=32,an=322n-1=32n-2.
3.等比数列{an}中,a1+a2=8,a3-a1=16,则a3等于()
A.20 B.18
C.10 D.8
解析:选B.设公比为q(q1),则
a1+a2=a1(1+q)=8,
a3-a1=a1(q2-1)=16
第5篇:行程应用题及答案
行程应用题及答案(整理8篇)由网友 “frog169” 投稿提供,下面是小编整理过的行程应用题及答案,欢迎您能喜欢,也请多多分享。
篇1:行程应用题及答案
行程应用题及答案
1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.
解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇
第6篇:平均数应用题及答案
平均数应用题及答案
应用题是数学中典型的练习,以下是小编整理的平均数应用题及答案,欢迎阅读参考!
例1. 妈妈买来香蕉 5千克,每千克2.4元;梨4千克,每千克3.2元;贡桔11千克,每千克4.2元。妈妈买的这些水果平均每千克多少元?
分析:要求水果平均每千克多少元,就要求出这几种水果的总价和总重量,最后求平均数,即平均每千克水果的价钱。
解:(2.4×5+3.2×4+4.2×11)÷(5+4+11)
=(12+12.8+46.2)÷20
=71÷20
=3.55(元)
答:妈妈买的这些水果平均每千克3.55元。
例2. 小明期末数学、语文、艺术、综合实践平均成绩为90分,加上体育成绩后,五门功课的平均分数下降了2分,小明体育考了多少分?
分析一:由小明期末四门功课的平均分数,可以求出四门功课的总分数,五门功课的