第1篇:四年级奥数行程应用题
四年级奥数行程应用题
甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?
解答:
大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。为了节省时间,肯定是尽可能让速度快的`人承担往返送手电筒的任务。那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。所以花费的总时间为:2+1+10+2+2=17分钟。
第2篇:四年级奥数应用题
四年级奥数应用题
经过主席台 光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台,需要多少分钟? 分析:从表面上来看这道题与前面的例是完全不同但从实质上看,它是植树问题的逆解题目.根据题目中三年级参加运动会的总人数与每行的人数.可求出三年级共列队多少行?每行相当于已知的树木棵数,每行前后间隔2米,相当于每两棵树间的距离,这样可以求出入场式队伍的.全长;再用队伍的长度加上主席台的长度,就是每个人通过主席台所走的路程,再用所行的路程除以行进的速度,就可以求出通过主席台所需的时间。 解答:(1)三年级入场式列队的行数是:125÷5=25(行);(2)三年级入场式队伍的全长是:2×(25-1)=48(米);(3)三年级入场式队伍的全长加上主席台的长度,即每个人通过主席台所走的路程是:48+42=90(米);(4)通过主席台所走的路程是:90÷45=2(分钟) 综合算式:[2×(125÷5-1)+42]÷45=2(分钟)
答:通过主席台需要2分钟。
第3篇:行程奥数练习题
行程奥数练习题
1.两个城市相距500千米,一列客车和一列货车同时从两个城市相对开出,客车平均速度是每小时55千米,货车平均速度是每小时45千米。两车开出后几小时相遇?500/(55+45)=5(小时)
2.两辆汽车同时从甲乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经4小时相遇。甲乙两地相距多少千米?(56+63)×4=476(千米)
3.客车与货车分别从相距275千米的两站同时相向开出,2.5小时在途中相遇。已知客车每小时行60千米,货车每小时行多少千米?276/2.5-60=50(千米)
4.两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。一辆汽车每小时行37千米,另一辆汽车每小时行多少千米?(465-120)/4.5=39.7(千米)
5.