初中几何证明题解题技巧

精品范文 时间:2023-08-18 07:13:13 收藏本文下载本文

第1篇:初中几何证明题解题技巧

初中几何证明题解题技巧

初中几何证明题解题技巧

一、强心理攻势——闯畏难情绪关

初一、初二学生的年龄,一般都在十三、十四岁左右,从心理学角度来看,正是自觉思维向逻辑思维的过度阶段。因此,几何证明的入门,也就是学生逻辑思维的起步。这种思维方式学生才接触,肯定会遇到一些困难。从自己多年的教学实践来看,有的学生在这时“跌倒了”,就丧失了信心,以至于几何越学越糟,最终成了几何“门外汉”。但有的学生,在这时遇到了一些困难,失败了,却信心十足,不断地去总结,认真思考,最后越学越有兴趣。2008学年当我接班伊始,我就注意到那个坐在教室中间的小周:虽然她平时上课能安静听讲,但是集中注意力时间很短,记忆能力也特别差,当老师提问她时,总是羞涩地低下头,默不作声。她经常偷工减料地写作业,对自己的要求也不高,所以她数学总分只有30多分。我想自己一定要努力改变这一情况,共同寻找一条适合她的教学之路。

通过与她谈心,让她意识到几何证明题是学习几何的入门,是学生逻辑思维的起步。“你和同学们同时开始学习几何,相信自己的能力,只要上课认真听讲,在学习过程中不断地总结经验,有不懂的,有疑问的及时问老师,相信自己的能力,同时也是证明自己不比别人差的一个最好的机会。”“不管在什么情况下,老师做到有问必答,也保证不会有任何批评的话。老师相信在你自己的不断总结和尝试下,在几何证明这一块上不会输于任何一个学生。”我让其明白初一、初二正是学习几何证明的一个契机,只要能学好,代数部分也会有所提高,更何况她的前一阶段的数学成绩在个人的努力下还是有所提高,说明思维能力还是比较强的。通过谈心她表示愿意克服困难,和大家一起学习几何证明。当她有进步后,及时地给予表扬。“你做得真好,继续努力!!”“虽然有点小问题,但有进步,加油!”在交上的作业中,总是给予点评,写些鼓励的语言。在不断的鼓励和帮助下,学习逐渐有了信心,学习成绩在逐步提高。

学好几何证明,起步要稳,因此要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。

1、牢记几何语言

几何证明题,要使用几何语言,这对于刚学几何的学生来说,仅当又学一门“外语”,并努力尽快地掌握这门“外语”的语言使用和表达能力。

首先,从几何第一课起,就应该特别注意几何语言的规范性,要让学生理解并掌握一些规范性的几何语句。如:“延长线段AB到点C,使AC=2AB”,“过点C作CD⊥AB,垂足为点D”,“过点A作l∥CD”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。

其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于平角的叫钝角”,“大于直角或小于平角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。

2、规范推理格式

数学中推理证明的书写格式有许多种,但最基本的是演绎法,也就是从已知条件出发,根据已经学过的数学概念、公理、定理等知识,顺着推理,由“已知”得“推知”,由“推知”得“未知”,逐步地推出求证的结论来。这种证题格式一般叫“演绎法”,课本上的定理证明,例题的证明,多数是采用这种格式。它的书写形式表达常用语言是“因为…,所以…”特别是一开始学习几何证明,首先要掌握好这种推理格式,做到规范化。如:在平行线性质的教学中,开始以填空的形式填写,

3、积累证明思路

“几何证明难”最难莫过于没有思路。怎样积累证明思路呢?这主要靠听讲,看书时积极思考,不仅弄明白题目是“如何证明?”,还要进一步追究一下,“证明题方法是如何想出来的?”。只有经常这样独立思考,才会使自己的思路开阔灵活。随着证明题难度的增加,还要教会学生用“两头凑”的方法,即在同一个证明题的分析过程中,分析法与综合法并用,来缩短已知与未知之间的距离,在教学安排时,要给其足够的时间思考,而且重复证明思路,提高对解题思路的理解和应用能力。例如:在教授平行线和角平分线的关系时,设置了不同的例题。

4、培养书写证明过程中的逻辑思维能力

有的学生写出的证明过程,条理清楚,逻辑性强,但有的`学生写出的证明过程逻辑混乱,没有条理性,表达不清楚,这种情况,就是在平时的教学中,没有注意培养学生的逻辑思维能力。

首先,一开始学习几何,一定要在书写证明过程中逐步培养学生的逻辑思维能力。强调由哪个条件才能得出什么结论,不要根据初三数学对几何证明的要求,忽略中间的条件的描述。例如在三角形全等的几何证明中,如图,AC∥DE,AC=DE,BD=FC.

说明△ABC≌△EFD.

解:因为AC∥DE(已知)

所以∠ACB=∠EDF(两直线平行,内错角相等)(第一段)

因为BD=FC(已知)

所以BD+DC=FC+DC(等式性质)

即BC=FD(第二段)

在△ABC和△EFD中

AC=DE(已知)

∠ACB=∠EDF(已证)

BC=FD(已证)

所以△ABC≌△EFD(S.A.S)(第三段)

在描述中不要漏了条件的大括号,判定依据等,检验在写的过程中是否符合所写的几何命题的格式等注意思维的严密性。

其次,在书写证明过程时,要逐步培养学生书写证明过程中的整体逻辑性,即通过分析,这个证明过程可分几大段来写,每一段之间的逻辑关系是什么?哪些段应先写,哪些段应后写。例如在上面的几何证明过程中,分成三大段,强调应先写第一段和第二段,第一段和第二段可以互换,第三段与第一段和第二段之间不能互换,提醒注意段与段之间的逻辑性,在搞清楚了这些之后,然后再分段书写证明过程,前面已证明的结论,在后面的证明过程中直接应用应把条件在写一次,体现其逻辑性。这样写出来的证明过程才条理清楚,逻辑性强。

三、善于总结经验——把好思维总结关

随着几何课程的进展,几何证明题的内容和难度都会不断地增加。因此,学习了一段之后,要回顾一下,看看已学了哪些知识点?自己在审题,推理、思路分析,证明过程等的书写方面掌握了没有,熟练的程度如何?如果在某些方面掌握得还不很好,就要在该方面多作一些练习,多想多问,使自己达到即熟练,又会“巧用”的程度。

例如在经过一个星期的几何证明学习后,每个星期出好一份与前一阶段讲课内容一致的练习题,通过学生的答题了解学生的掌握情况,在试卷分析的时候着重对思维能力较强的,学生错的较多的问题进行讲解,同时通过小组之间的合作,互相说出解题思路和错误的原因,不断的地找出自己在解题过程中的问题,总结前一阶段学习中的几何证明推理和思维上存在的问题,使下一阶段的学习更优化。

总之,如果以上过程都一步一个脚印地走好了,那么你就会很轻松地进入几何证明学习的大门,在几何证明的王国里遨游。我始终坚持帮助学生闯过畏难心理,坚信每一个孩子都是拥有巨大的潜能,永不放弃一个学生。我反复把握关键点,反复指导学生,让他们体会学习数学的乐趣,获得成功的喜悦。我相信只要时刻关注学生的最近发展情况,他们自然而然会进入“采菊东篱下,悠然见南山”的物我合一的解题佳境。

第2篇:初中几何证明题

(1)如图,在三角形ABC中,BD,CE是高,FG分别为ED,BC的中点,O是外心,求证AO∥FG 问题补充:

证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则⊿AEC∽⊿ADB,AE/AD=AC/AB;

又∠EAD=∠CAB,则⊿EAD∽⊿CAB,得∠AED=∠ACB=∠M.∴∠AED+∠BAM=∠M+∠BAM=90°,得AO⊥DE.--------(1)

连接DG,EG.点G为BC的中点,则DG=BC/2;(直角三角形斜边的中线等于斜边的一半)同理可证:EG=BC/2.故DG=EG.又F为DE的中点,则FG⊥DE.(等腰三角形底边的中线也是底边的高)-----------------(2)所以,AO∥FG.(2)已知梯形ABCD中,对角线AC与腰BC相等,M是底边AB的中点,L是边DA延长线上一点连接LM并延长交对角线BD于N点

延长LM至E,使LM=ME。

∵AM=MB,LM=ME,∴ALBE是平行四边形,∴AL=BE,AL∥EB,∴LN/EN=DN/BN。

延长CN交AB于F,令LC与AB的交点为G。

∵AB是梯形ABCD的底边,∴BF∥CD,∴CN/FN=DN/BN。

由LN/EN=DN/BN,CN/FN=DN/BN,得:LN/EN=DN/BN,∴LC∥FE,∴∠GLM=∠FEB。

由AL∥EB,得:∠LAG=∠EBF,∠ALM=∠BEM。

由∠ALM=∠BEM,∠GLM=∠FEB,得:∠ALM-∠GLM=∠BEM-∠FEB,∴∠ALG=∠BEF,结合证得的∠LAG=∠EBF,AL=BE,得:△ALG≌△BEF,∴AG=BF。

∵AC=BC,∴∠CAG=∠CBF,结合证得的AG=BF,得:△ACG≌△BCF,∴ACL=∠BCN。

(3)如图,三角形ABC中,D,E分别在边AB,AC上且BD=CE,F,G分别为BE,CD的中点,直线FG交

AB于P,交AC于Q.求证:AP=AQ

取BC中点为H

连接HF,HG并分别延长交AB于M点,交AC于N点

由于H,F均为中点

易得:

HM‖AC,HN‖AB

HF=CE/2,HG=BD/

2得到:

∠BMH=∠A

∠CNH=∠A

又:BD=CE

于是得:

HF=HG

在△HFG中即得:

∠HFG=∠HGF

即:∠PFM=∠QGN

于是在△PFM中得:

∠APQ=180°-∠BMH-∠PFM=180°-∠A-∠QGN

在△QNG中得:

∠AQP=180°-∠CNH-∠QGN=180°-∠A-∠QGN

即证得:

∠APQ=∠AQP

在△APQ中易得到: AP=AQ

(4)ABCD为圆内接凸四边形,取△DAB,△ABC,△BCD,△CDA的内心O,O,O,O.求证:OOOO为矩形. 123

41234

已知锐角三角形ABC的外接圆O,过B,C作圆的切线交于E,连结AE,M为BC的中点。求证角BAM=角EAC。

设点O为△ABC外接圆圆心,连接OP;

则O、E、M三点共线,都在线段BC的垂直平分线上。

设AM和圆O相交于点Q,连接OQ、OB。

由切割线定理,得:MB² = Q·MA ;

由射影定理,可得:MB² = ME·MO ;

∴MQ·MA = ME·MO,即MQ∶MO = ME∶MA ;

又∵ ∠OMQ = ∠AME,∴△OMQ ∽ △AME,可得:∠MOQ = ∠MAE。

设OM和圆O相交于点D,连接AD。

∵弧BD = 弧CD,∴∠BAD = ∠CAD。

∵∠DAQ =(1/2)∠MOQ =(1/2)∠MAE,∴∠DAE = ∠MAE∠DAE = ∠CAD-∠DAQ = ∠CAM。

设AD、BE、CF是△ABC的高线,则△DEF称为△ABC的垂足三角形,证明这些高线平分垂足三角形的内角或外角 设交点为O,OE⊥EC,OD⊥DC,则CDOE四点共圆,由圆周角定理,∠ODE=∠OCE。

CF⊥FC,AD⊥DC,则ACDF四点共圆,由圆周角定理,∠ADF=∠ACF=∠OCE=∠ODE,AD平分∠EDF。

其他同理。

平行四边形内有一点P,满足角PAB=角PCB,求证:角PBA=角PDA

过P作PH//DA,使PH=AD,连结AH、BH

∴四边形AHPD是平行四边形

∴∠PHA=∠PDA,HP//=AD

∵四边形ABCD是平行四边形

∴AD//=BC

∴HP//=BC

∴四边形PHBC是平行四边形

∴∠PHB=∠PCB

又∠PAB=∠PCB

∴∠PAB=∠PHB

∴A、H、B、P四点共圆

∴∠PHA=∠PBA

∴∠PBA=∠PDA

补充:

补充:

把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

已知点o为三角型ABC在平面内的一点,且向量OA2+BC2=OB2+CA2=OC2+AB2,,则O为三角型ABC的()

只说左边2式子 其他一样

OA2+BC2=OB2+CA2 移项后平方差公式可得

(OA+OB)(OA-OB)=(CA+BC)(CA-BC)化简

得 BA(OA+OB)=BA(CA-BC)

移项并合并得BA(OA+OB+BC-CA)=0

即 BA*2OC=0 所以BA和OC垂直

同理AC垂直BO BC垂直AO哈哈啊是垂心

设H是△ABC的垂心,求证:AH2+BC2=HB2+AC2=HC2+AB2.

作△ABC的外接圆及直径AP.连接BP.高AD的延长线交外接圆于G,连接CG. 易证∠HCB=∠BCG,从而△HCD≌△GCD.

故CH=GC.

又显然有∠BAP=∠DAC,从而GC=BP.

从而又有CH2+AB2=BP2+AB2=AP2=4R2.

同理可证AH2+BC2=BH2+AC2=4R2.

第3篇:初中几何证明题

初中几何证明题

己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。

求证:BD+CE≥DE。

1.延长EM至F,使MF=EM,连BF.∵BM=CM,∠BMF=∠CME,∴△BFM≌△CEM(SAS),∴BF=CE,又DM⊥EM,MF=EM,∴DE=DF

而∠DBF=∠ABC+∠MBF=∠ABC+∠ACB

∴BD+BF>DF,∴BD+CE>DE。

2.己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。

求证:BD+CE≥DE

如图

过点C作AB的平行线,交DM的延长线于点F;连接EF

因为CF//AB

所以,∠B=∠FCM

已知M为BC中点,所以BM=CM

又,∠BMD=∠CMF

所以,△BMD≌△CMF(ASA)

所以,BD=CF

那么,BD+CE=CF+CE……………

未完,继续阅读 >

第4篇:初中数学几何证明题

初中数学几何证明题

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某

未完,继续阅读 >

第5篇:初中数学几何证明题

平面几何大题 几何是丰富的变换

多边形平面几何有两种基本入手方式:从边入手、从角入手

注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方式?

难题

未完,继续阅读 >

下载初中几何证明题解题技巧word格式文档
下载初中几何证明题解题技巧.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文