第1篇:善于反思总结,领会解题中蕴含的数学思想方法范文
善于反思总结,领会解题中蕴含的数学思想方法范文
复习备考需要足够数量的习题,只有针对性训练才能在中考得以正常发挥,只有每天动笔适当的做些习题才能保持思维的连贯性。但仅仅做题还是远远不够,需要解题后的反思与总结。在反思中才能进一步看透问题的本质,体会命题的意图。在总结的过程中也才能优化解题的思路,探索处理问题规律,形成有自己特色的经验。
在复习中既要注重数学概念、法则、定理等基础知识的梳理,更要关注解题后的反思与总结,领会解题中蕴含的数学思想方法,并通过不断积累逐渐的纳入自己已有的知识体系。在反思总结中可以从两方面考虑:一是宏观层面,如每复习一块内容后可以从主要知识考点、考点之间的联系等去反思;二是微观层面,如解题后的可以对所解题的结构是否理解清楚,解题过程中运用了哪些基础知识和基本技能?哪些步骤易出错?原因何在?如何防止?也可以对解题的方法进行评价找出最优的`解法,考虑解题中运用了哪些思维方式、数学思想方法?想法是如何分析出来的?有无规律可循?也可以对解题步骤进行分析,抓住解题的关键。如解题的难点在哪?我是如何突破的?能否用其他方法也得到同样结果?其方法的优劣所在?若能把反思与总结当作一个经常性、自觉性的学习行为,就会在不断地积累和总结基本的数学活动经验中,提高数学知识的运用能力。
第2篇:考研数学命题中蕴含隐秘信息
考研数学命题中蕴含隐秘信息,掌握这些信息能够帮助你在数学考试中事半功倍。下面是考研老师从命题原则、评分标准、试题的难度、知识点的分布等四方面着手解析考研数学命题中的隐秘信息。
命题原则
根据教育部发布的全国硕士研究生入学统一考试数学科考试的性质及招收硕士研究生的指导思想,每年的全国硕士研究生入学统一考试数学考试试题的命制都须遵循以下原则:
1.命题不以高校教学基本要求和某一指定教材为依据,而是以《考试大纲》为依据;
2.命题既有利于国家对高层次人才的选拔,又有利于高等学校各类数学课程教学质量的提高,重点是前者;
3.命题须能将数学基础好、有发展潜力并具有一定创新能力的考生选拔出来,进入更高层次的教育阶段学习、深造;
4.命题虽不以高校教学要求为依据,但要求试题编制能结合高等学校的教学实际,能反映教学的实际水平,能考查考生应当具备的知识和能力,同时利用考试“指挥棒”引导高校教学向培养学生应用数学能力的方向发展,从而为提高数学教学质量起到积极作用。
评分标准
数学试题分三种题型:填空题、选择题、解答题。教育部制订的参考答案及评分参考对填空题及选择题仅给出答案,无具体推导计算过程。答对每题得4分,答错得0分,不倒扣。故对于选择题,鼓励考生在不会作答时猜测选项。解答题包括计算题、证明题以及其他解答题,评分参考一般提供一至两种参考解答和证明,有些试题有更多的解法甚至包括初等解法,但所提供的参考解答必定是与《考试大纲》规定的考试内容和考试目标一致的解法和证明方法。计算题和证明题是按照计算或推理的过程连续赋分的,比如一个12分的题目需要4个关键步骤,则每完成一个关键步骤得3分,但若前面的步骤未完成,后面也不能得分。若用不同的解法,达到同一结果给相同的分数。
试题的难度
试题的考查范围不超过大纲的规定,各科目在试卷中的占分、题型比例与大纲要求基本一致,试卷的难易度与参考试题的难易度基本一致,不出现超纲题、偏题和怪题。试题编制以考查数学的基本概念、基本方法和基本原理为主,在此基础上加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象能力和综合运用所学知识解决实际问题能力的考查。历年试题难度保持一定的稳定,题目符合各种题型的编制原则,科学、规范、公正。试题的难度可以量化,一般以考生在该题上的平均分与该题满分之比表示。难度在0.3-0.8之间的题目为中等难度,此类题目占整个试卷的80%以上;0.3以下为难题,0.8以上为易题,这两类题目相对较少。评价试题是否科学合适,还有另一个评价指标——区分度,即题目是否能将考生的真实水平区分开。区分能力强的题目就是好题目,特别是难度适中而区分度高的题目。而难度大且区分度小及难度小且区分度小的题目均是不合适的题目,这样的题目在以后的考试中会越来越少。
第3篇:数学思想方法的总结
数学思想方法的总结
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还通过函数与方程的互相转化、接轨,达到解决问题的目的。函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的`图象与x轴的交点的横坐标。
函数是高中数学的重要内容之一,其理论和应用涉及各个方面,是贯穿整个高中数学的一条主线。这里所说的函数思想具体表现为:运用函数的有关性质,解决函数的某些问题;以运动和变化的观点分析和研究具体问题中的数学关系,通过函数的形式把这种关系表示出来并加以研究,从而使问题获得解决;
第4篇:数学思想方法的总结
数学思想方法的总结
总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能够给人努力工作的动力,因此,让我们写一份总结吧。那么我们该怎么去写总结呢?以下是小编为大家收集的数学思想方法的总结,希望对大家有所帮助。
数学思想方法的总结 篇1
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还通过函数与方程的互相转化、接轨,达到解决问题的目的。函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标。
函数是高中数学