初中奥数的一元二次方程应用题及解析

精品范文 时间:2023-03-05 07:09:01 收藏本文下载本文

第1篇:关于初中奥数的一元二次方程应用题及解析

关于初中奥数的一元二次方程应用题及解析

一、增长率问题

例1

恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.

解: 设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,

即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).

答 :这两个月的平均增长率是10%.

说明 :这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中mn.

二、商品定价

例2

益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解 :根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,

解这个方程,得a1=25,a2=31.

因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.

所以350-10a=350-10×25=100(件).

答 :需要进货100件,每件商品应定价25元.

说明 :商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

三、储蓄问题

例3

王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的'500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)

解 :设第一次存款时的年利率为x.

则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.

解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.

答 :第一次存款的年利率约是2.04%.

说明 :这里是按教育储蓄求解的,应注意不计利息税.

四、趣味问题

例4

一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?

解 :设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.

则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.

解这个方程,得x1=-1.8(舍去),x2=1.

所以x+1.4+0.1=1+1.4+0.1=2.5.

答 :渠道的上口宽2.5m,渠深1m.

说明 :求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

第2篇:一元二次方程应用题

一元二次方程应用题----销售问题

1、某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件。

(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?

(2)若要使商场平均每天的盈利最多,请你为商场设计降价方案。

2、商场某新商品每件的进价是120元,在试销期间发现,当每件商品售价130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件。据此规律,请回答:

(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?

(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商品的日利润可达1600元?(提示:盈利=售价-进价)

3、进价为每件30元的某商品,售价为每件60元时,每星期可卖出100件。市场调查反映:如果每件的售价每降低1元,每星期可多卖出20件,但售价不能低于每件50元。设每件降价x元(x为整数),每星期的利润为y元。

(1)求y与x的函数关系并指出自变量x的取值范围。

(2)若某星期的利润为6000元,此利润是否是本月的最大利润,请说明理由。

(3)试分析售价在什么范围内时,每星期的利润不低于5000元?

4、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元。

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)求每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?

5、某市场将进价货价为40元/件的商品按60元/件出售,每星期可卖出300件,市场调查反映;如调整价格,没涨价1元/件,每星期该商品要少卖出10件。

(1)请写出该商场每月卖出该商品所获得的利润y(元)与该商品每件涨价x(元)间的函数关系式;

(2)每月该商场销售该种商品获利能否达到6300元?请说明理由;

(3)请分析并回答每件售价在什么范围内,该商场获得的月利润不低于6160元?

6、某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部注满,当每个房间每天的房价每增加10元时,就会有一个房间空闲,宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x元(x为10的正整数倍)。

(1)设一天订住得房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;

(2)设宾馆一天的利润为w元,求w与x的函数关系式;

(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

第3篇:人教版初中奥数一元二次方程的测试题

人教版初中奥数一元二次方程的测试题

一、 选择题(每小题3分,共30分)

1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )

A、(x-p)2=5 B、(x-p)2=9

C、(x-p+2)2=9 D、(x-p+2)2=5

2、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )

A、-1 B、0 C、1 D、2

3、若α、β是方程x2+2x-2005=0的两个实数根,则α2+3α+β的值为( )

A、2005 B、2003 C、-2005 D、4010

4、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )

A、k≤- B、k≥- 且k≠0

C、k≥- D、k>- 且k≠0

5、关于x的一元二次方程的两个根为x1=1,x2=2,则

未完,继续阅读 >

第4篇:一元二次方程应用题教案设计

一元二次方程应用题教案设计

一、教学目标

1、能分析应用题中的数量关系,并找出等量关系.

2、能用列一元二次方程的方法解应用题.

3、培养学生化实际问题为数学问题的能力及分析问题、解决问题的能力.

二、 教学重难点

教学重点:能分析应用题中的数量间的关系,列出一元二次方程解应用题.

教学难点 :例2涉及比例、平均增长率与多年的增长量之间的关系.

三、 教学过程

(一)引入新课

设问:已知一个数是另一个数的2倍少3,它们的积是135,求这两个数.

(由学生自己设未知数,列出方程).

问:所列方程是几元几次方程?由此引出课题.

(二)新课教学

1、对于上述问题,设其中一个数为x,则另一个数是2x-3,根据题意列出方程:

这是一个关于x的一元二次方程.下面先复习一下列一元一次方程解应用题的一般步骤:

(1) 分析题意,找出等量关系

未完,继续阅读 >

第5篇:一元二次方程的应用题

一元二次方程的应用题

一元二次方程的应用题(1)

一、增长率问题

例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率。

解 设这两个月的平均增长率是x。,则根据题意,得200(1-20%)(1+x)2=193.6,

即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去)。

答 这两个月的平均增长率是10%。

说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n。对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n。

二、商品定价

例2 益

未完,继续阅读 >

下载初中奥数的一元二次方程应用题及解析word格式文档
下载初中奥数的一元二次方程应用题及解析.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文