高一物理必修知识点总结报告

精品范文 时间:2023-03-05 07:06:54 收藏本文下载本文

第1篇:高一物理必修知识点总结报告

高一物理必修知识点总结报告

在我们的学习时代,大家都背过各种知识点吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。还在为没有系统的知识点而发愁吗?下面是小编整理的高一物理必修知识点总结报告,欢迎大家分享。

高一物理必修知识点总结报告1

机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

运动的特性:普遍性,永恒性,多样性

参考系

1、任何运动都是相对于某个参照物而言的,这个参照物称为参考系。

2、参考系的选取是自由的。

1)比较两个物体的运动必须选用同一参考系。

2)参照物不一定静止,但被认为是静止的。

质点

1、在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

2、质点条件:

1)物体中各点的运动情况完全相同(物体做平动)

2)物体的大小(线度)<<它通过的距离

3、质点具有相对性,而不具有绝对性。

4、理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体)

第二节时间位移

时间与时刻

1、钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

△t=t2—t1

2、时间和时刻的单位都是秒,符号为s,常见单位还有min,h。

3、通常以问题中的初始时刻为零点。

路程和位移

1、路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。

2、从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。

3、物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。

4、只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。

第三节记录物体的运动信息

打点记时器:通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记时器——火花打点,电磁打点记时器——电磁打点);一般打出两个相邻的点的时间间隔是0。02s。

第四节物体运动的速度

物体通过的路程与所用的时间之比叫做速度。

平均速度(与位移、时间间隔相对应)

物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。

v=s/t

瞬时速度(与位置时刻相对应)

瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。

速率≥速度

第五节速度变化的快慢加速度

1、物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值

a=(vt—v0)/t

2、a不由△v、t决定,而是由F、m决定。

3、变化量=末态量值—初态量值……表示变化的大小或多少

4、变化率=变化量/时间……表示变化快慢

5、如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。

6、速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。

第六节用图象描述直线运动

匀变速直线运动的位移图象

1、s—t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)

2、物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)

3、图象中两图线的交点表示两物体在这一时刻相遇。

匀变速直线运动的速度图象

1、v—t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)

2、图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。

高一物理必修知识点总结报告2

一、曲线运动

(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。

(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。

(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。

二、运动的合成与分解

1、深刻理解运动的合成与分解

(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

运动的合成与分解基本关系:

1分运动的独立性;

2运动的等效性(合运动和分运动是等效替代关系,不能并存);

3运动的等时性;

4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)

(2)互成角度的两个分运动的合运动的判断

合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。

①两个直线运动的合运动仍然是匀速直线运动。

②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。

③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。

2、怎样确定合运动和分运动

①合运动一定是物体的实际运动

②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。

③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。

3、绳端速度的分解

此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)

4、小船渡河问题

(1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,

(2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0。

所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。

(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs。

高一物理必修知识点总结报告3

第一、二节探究自由落体运动/自由落体运动规律

记录自由落体运动轨迹

1、物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。

2、伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广

自由落体运动规律

自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。g=9。8m/s2

重力加速度g的方向总是竖直向下的。其大小随着纬度的增加而增加,随着高度的增加而减少。

vt2=2gs

竖直上抛运动

1、处理方法:分段法(上升过程a=—g,下降过程为自由落体),整体法(a=—g,注意矢量性)

2、速度公式:vt=v0—gt位移公式:h=v0t—gt2/2

3、上升到点时间t=v0/g,上升到点所用时间与回落到抛出点所用时间相等

4、上升的高度:s=v02/2g

第三节匀变速直线运动

匀变速直线运动规律

1、基本公式:s=v0t+at2/2

2、平均速度:vt=v0+at

3、推论:1)v=vt/2

2)S2—S1=S3—S2=S4—S3=……=△S=aT2

3)初速度为0的n个连续相等的时间内S之比:

S1:S2:S3:……:Sn=1:3:5:……:(2n—1)

4)初速度为0的n个连续相等的位移内t之比:

t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)

5)a=(Sm—Sn)/(m—n)T2(利用上各段位移,减少误差→逐差法)

6)vt2—v02=2as

第四节汽车行驶安全

1、停车距离=反应距离(车速×反应时间)+刹车距离(匀减速)

2、安全距离≥停车距离

3、刹车距离的大小取决于车的初速度和路面的粗糙程度

4、追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。可用图象法解题。

高一物理必修知识点总结报告4

认识形变

1、物体形状回体积发生变化简称形变。

2、分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。

按效果分:弹性形变、塑性形变

3、弹力有无的判断:

1)定义法(产生条件)

2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。

3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。

弹性与弹性限度

1、物体具有恢复原状的性质称为弹性。

2、撤去外力后,物体能完全恢复原状的形变,称为弹性形变。

3、如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。

探究弹力

1、产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。

2、弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。

绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。

弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

3、在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。

F=kx

4、上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。

5、弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2

第二节研究摩擦力

滑动摩擦力

1、两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。

2、在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。

3、滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN

4、μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。

5、滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。

6、条件:直接接触、相互挤压(弹力),相对运动/趋势。

7、摩擦力的大小与接触面积无关,与相对运动速度无关。

8、摩擦力可以是阻力,也可以是动力。

9、计算:公式法/二力平衡法。

研究静摩擦力

1、当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

2、物体所受到的静摩擦力有一个限度,这个值叫静摩擦力。

3、静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

4、静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm

5、静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0)

6、静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。

力的图示

1、力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。

2、图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。

3、力的示意图:突出方向,不定量。

力的等效/替代

1、如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。

2、根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。

3、实验:平行四边形定则:P58

第四节力的合成与分解

力的平行四边形定则

1、力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。

2、一切矢量的运算都遵循平行四边形定则。

合力的计算

1、方法:公式法,图解法(平行四边形/多边形/△)

2、三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。

3、设F为F1、F2的合力,θ为F1、F2的夹角,则:

F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ)

当两分力垂直时,F=F12+F22,当两分力大小相等时,F=2F1cos(θ/2)

1)|F1—F2|≤F≤|F1+F2|

2)随F1、F2夹角的增大,合力F逐渐减小。

3)当两个分力同向时θ=0,合力:F=F1+F2

4)当两个分力反向时θ=180°,合力最小:F=|F1—F2|

5)当两个分力垂直时θ=90°,F2=F12+F22

分力的计算

1、分解原则:力的实际效果/解题方便(正交分解)

2、受力分析顺序:G→N→F→电磁力

第五节共点力的平衡条件

共点力

如果几个力作用在物体的同一点,或者它们的作用线相交于同一点(该点不一定在物体上),这几个力叫做共点力。

高一物理必修知识点总结报告5

名称:加速度

1、定义:速度的变化量Δv与发生这一变化所用时间Δt的比值。

2、公式:a=Δv/Δt

3、单位:m/s^2(米每二次方秒)

4、加速度是矢量,既有大小又有方向。加速度的`大小等于单位时间内速度的增加量;加速度的方向与速度变化量ΔV方向始终相同。特别,在直线运动中,如果速度增加,加速度的方向与速度相同;如果速度减小,加速度的方向与速度相反。

5、物理意义:表示质点速度变化的快慢的物理量。

举例:假如两辆汽车开始静止,均匀地加速后,达到10m/s的速度,A车花了10s,而B车只用了5s。它们的速度都从0m/s变为10m/s,速度改变了10m/s。所以它们的速度变化量是一样的。但是很明显,B车变化得更快一样。我们用加速度来描述这个现象:B车的加速度(a=Δv/t,其中的Δv是速度变化量)>加速度计构造的类型A车的加速度。

显然,当速度变化量一样的时候,花时间较少的B车,加速度更大。也就说B车的启动性能相对A车好一些。因此,加速度是表示速度变化的快慢的物理量。

注意:

1、当物体的加速度保持大小和方向不变时,物体就做匀变速运动。如自由落体运动,平抛运动等。

当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运动。如竖直上抛运动。

当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运

2、加速度可由速度的变化和时间来计算,但决定加速度的因素是物体所受合力F和物体的质量M。

3、加速度与速度无必然联系,加速度很大时,速度可以很小;速度很大时,加速度也可以很小。例如:炮弹在发射的瞬间,速度为0,加速度非常大;以高速直线匀速行驶的赛车,速度很大,但是由于是匀速行驶,速度的变化量是零,因此它的加速度为零。

4、加速度为零时,物体静止或做匀速直线运动(相对于同一参考系)。任何复杂的运动都可以看作是无数的匀速直线运动和匀加速运动的合成。

5、加速度因参考系(参照物)选取的不同而不同,一般取地面为参考系。

6、当运动的方向与加速度的方向之间的夹角小于90°时,即做加速运动,加速度是正数;反之则为负数。

特别地,当运动的方向与加速度的方向之间的夹角恰好等于90°时,物体既不加速也不减速,而是匀速率的运动。如匀速圆周运动。

7、力是物体产生加速度的原因,物体受到外力的作用就产生加速度,或者说力是物体速度变化的原因。说明

当物体做加速运动(如自由落体运动)时,加速度为正值;当物体做减速运动(如竖直上抛运动)时,加速度为负值。

8、加速度的大小比较只比较其绝对值。物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。

向心加速度

向心加速度(匀速圆周运动中的加速度)的计算公式:

a=rω^2=v^2/r

说明:a就是向心加速度,推导过程并不简单,但可以说仍在高

科里奥利加速度

科里奥利加速度

中生理解范围内,这里略去了。r是圆周运动的半径,v是速度(特指线速度)。ω(就是欧姆的小写)是角速度。

这里有:v=ωr。

1、匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的变化,所以说匀速圆周运动只是匀速率运动的一种。至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不愿意换了吧。

2、匀速圆周运动的向心加速度总是指向圆心,即不改变速度的大小只是不断地改变着速度的方向。

重力加速度

地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。

重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显着减小,此时不能认为g为常数

距离面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到。

由于g随纬度变化不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9。80665m/s^2;作为重力加速度的标准值。在解决地球表面附近的问题中,通常将g作为常数,在一般计算中可以取g=9。80m/s^2。理论分析及精确实验都表明,随纬度增大,重力加速度g的数值逐渐增大。如:

赤道g=9.780m/s^2

广州g=9.788m/s^2

武汉g=9.794m/s^2

上海g=9.794m/s^2

东京g=9.798m/s^2

北京g=9.801m/s^2

纽约g=9.803m/s^2

莫斯科g=9.816m/s^2

北极地区g=9.832m/s^2

注:月球面的重力加速度约为1。62m/s^2,约为地球重力的六分之一。

匀加速直线动动的公式

1、匀加速直线运动的位移公式:

s=V0t+(at^2)/2=(vt^2—v0^2)/2a=(v0+vt)t/2

2、匀加速直线运动的速度公式:

vt=v0+at

3、匀加速直线运动的平均速度(也是中间时刻的瞬时速度):

v=(v0+vt)/2

其中v0为初速度,vt为t时刻的速度,又称末速度。

4、匀加速度直线运动的几个重要推论:

(1)V末^2—V初^2=2as(以初速度方向为正方向,匀加速直线运动,a取正值;匀减速直线运动,a取负值。)

(2)AB段中间时刻的即时速度:

Vt/2=(v初+v末)/2

(3)AB段位移中点的即时速度:

Vs/2=[(v末^2+v初^2)/2]^(1/2)

(4)初速为零的匀加速直线运动,在1s,2s,3s……ns内的位移之比为1^2:2^2:3^2……:n^2;

(5)在第1s内,第2s内,第3s内……第ns内的位移之比为1:3:5……:(2n—1);

(6)在第1米内,第2米内,第3米内……第n米内的时间之比为1:2^(1/2):3^(1/2):……:n^(1/n)

(7)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:△s=aT^2(a一匀变速直线运动的加速度T一每个时间间隔的时间)。

(8)竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO,加速度为g的匀减速直线运动。

加速度—加速运动与减速运动

物体运动时,如果加速度不为零,则处于加速状态。若加速度大于零,则为正加速;若加速度小于零,则为负加速(即速度减至0后反向加速)。(提示:物理中的符号不同于数学中的符号,在+、—号只代表是的标量,在物理中+、—号部分代表单纯的标量,还有部分还代表的像方向啦什么的矢量)

V=v末—v初

加速度公式:a=△V/△t

加速度—曲线加速运动

在加速度保持不变的时候,物体也有可能做曲线运动。比如,当你把一个物体沿水平方向用力抛出时,你会发现,这个物体离开桌面以后,在空中划过一条曲线,落在了地上。

物体在出手以后,受到的只有竖直向下的重力,因此加速度的方向和大小都不改变。但是物体由于惯性还在水平方向上以出手速度运动。这时,物体的速度方向与加速度方向就不在同一直线上了。物体就会往力的方向偏转,划过一条往地面方向偏转的曲线。

但是这个时候,由于重力大小不变,因此加速度大小也不变。物体仍然做的是匀加速运动,但不过是匀加速曲线运动。

加速度—小问题——加速度单位的来历

根据我们高中的课本描述,有加速度a=(Δv)/(Δt)=(v1—v2)/t,因为速度(v)的单位是m/s,时间(t)的单位是s,于是将m/s与s相除,得到的就是它的单位:m/s^2。

第2篇:高一物理知识点总结报告

高一物理知识点总结报告

总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可以使我们更有效率,因此好好准备一份总结吧。那么我们该怎么去写总结呢?下面是小编精心整理的高一物理知识点总结报告,仅供参考,大家一起来看看吧。

高一物理知识点总结报告1

一、探究形变与弹力的关系

弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)弹性限度:若物体形变过大,超过一定限度,撤去外力后,无法恢复原来的形状,这个限度叫弹性限度。

二、探究摩擦力

滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

说明:摩擦力的产生是由于物体表面不光滑造成的。

三、力的合成与分解

(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡

(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上

(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成

①确定研究对象;

②分析受力情况;

③建立适当坐标;

④列出平衡方程

四、共点力的平衡条件

1、共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力

2、平衡状态:在共点力的作用下,物体保持静止或匀速直线运动的状态。

说明:这里的静止需要二个条件,一是物体受到的合外力为零,二是物体的速度为零,仅速度为零时物体不一定处于静止状态,如物体做竖直上抛运动达到点时刻,物体速度为零,但物体不是处于静止状态,因为物体受到的合外力不为零。

3、共点力作用下物体的平衡条件:合力为零,即0

说明;

①三力汇交原理:当物体受到三个非平行的共点力作用而平衡时,这三个力必交于一点;

②物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N—1)个力的合力等大反向。

③若采用正交分解法求平衡问题,则其平衡条件为:FX合=0,FY合=0;

④有固定转动轴的物体的平衡条件

五、作用力与反作用力

学过物理学的人都会知道牛顿第三定律,此定律主要说明了作用力和反作用的关系。在对一个物体用力的时候同时会受到另一个物体的反作用力,这对力大小相等,方向相反,并且保持在一条直线上。

高一物理知识点总结报告2

物体与质点

1、质点:当物体的大小和形状对所研究的问题而言影响不大或没有影响时,为研究问题方便,可忽略其大小和形状,把物体看做一个有质量的点,这个点叫做质点。

2、物体可以看成质点的条件

条件:①研究的物体上个点的运动情况完全一致。

②物体的线度必须远远的大于它通过的距离。

(1)物体的形状大小以及物体上各部分运动的差异对所研究的问题的影响可以忽略不计时就可以把物体当作质点

(2)平动的物体可以视为质点

平动的物体上各个点的运动情况都完全相同的物体,这样,物体上任一点的运动情况与整个物体的运动情况相同,可用一个质点来代替整个物体。

小贴士:质点没有大小和形状因为它仅仅是一个点,但是质点一定有质量,因为它代表了一个物体,是一个实际物体的理想化的模型。质点的质量就是它所代表的物体的质量。

参考系

1、参考系的定义:描述物体的运动时,用来做参考的另外的物体。

2、对参考系的理解:

(1)物体是运动还是静止,都是相对于参考系而言的,例如,肩并肩一起走的两个人,彼此就是相对静止的,而相对于路边的建筑物,他们却是运动的。

(2)同一运动选择不同的参考系,观察结果可能不同。例如司机开着车行驶在高速公路上以车为参考系,司机是静止的,以路面为参考系,司机是运动的'。

(3)比较物体的运动,应该选择同一参考系。

(4)参考系可以是运动的物体,也可以是静止的物体。

小贴士:只有选择了参考系,说某个物体是运动还是静止,物体怎样运动才变得有意义参考系的选择是研究运动的前提是一项基本技能。

坐标系

1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的位置及位置变化。

2、坐标系分类:

(1)一维坐标系(直线坐标系):适用于描述质点做直线运动,研究沿一条直线运动的物体时,要沿着运动直线建立直线坐标系,即以物体运动所沿的直线为x轴,在直线上规定原点、正方向和单位长度。例如,汽车在平直公路上行驶,其位置可用离车站(坐标原点)的距离(坐标)来确定。

(2)二维坐标系(平面直角坐标系)适用于质点在平面内做曲线运动。例如,运动员推铅球以铅球离手时的位置为坐标原点,沿铅球初速方向建立x轴,竖直向下建立y轴,铅球的坐标为铅球离开手后的水平距离和竖直距离。

(3)三维坐标系(空间直角坐标系):适用于物体在三维空间的运动。例如,篮球在空中的运动。

高一物理知识点总结报告3

曲线运动

1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。

2、物体做直线或曲线运动的条件:

(已知当物体受到合外力F作用下,在F方向上便产生加速度a)

(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;

(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。

3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。

4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。

分运动

(1)在水平方向上由于不受力,将做匀速直线运动;

(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。

5、以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下。

6、①水平分速度:②竖直分速度:③t秒末的合速度

④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示

7、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

8、描述匀速圆周运动快慢的物理量

(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上

9、匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变

(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的

(3)周期T,频率:f=1/T

(4)线速度、角速度及周期之间的关系:

10、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。

11、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,

12、注意:

(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。

(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。

(3)做匀速圆周运动的物体受到的合外力就是向心力。

13、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动

高一物理知识点总结报告4

1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。

2、物体做直线或曲线运动的条件:

(已知当物体受到合外力F作用下,在F方向上便产生加速度a)

(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;

(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。

3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。

4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。

两分运动说明:

(1)在水平方向上由于不受力,将做匀速直线运动;

(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。

5、以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下。

6、①水平分速度:②竖直分速度:③t秒末的合速度

④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示

7、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

8、描述匀速圆周运动快慢的物理量

(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上

9、匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变

(2)角速度:ω=φ/t(φ指转过的'角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的

(3)周期T,频率f=1/T

(4)线速度、角速度及周期之间的关系:

10、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。

11、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,

12、注意的结论:

(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。

(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。

(3)做匀速圆周运动的物体受到的合外力就是向心力。

13、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动

高一物理知识点总结报告5

1、热力学第二定律

(1)常见的两种表述

①克劳修斯表述(按热传递的方向性来表述):热量不能自发地从低温物体传到高温物体。

②开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响。

a、“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助。

b、“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响。如吸热、放热、做功等。

(2)热力学第二定律的实质

热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。

(3)热力学过程方向性实例

特别提醒:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,如气体的等温膨胀过程。

2、能量守恒定律

能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变。

第一类永动机不可制成是因为其违背了热力学第一定律;

第二类永动机:违背宏观热现象方向性的机器被称为第二类永动机。这类永动机不违背能量守恒定律,不可制成是因为其违背了热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)。

熵是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。

3、能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。

第3篇:高一必修1物理知识点

高一必修1物理知识点(共4篇)由网友 “渐变花生酱大楼” 投稿提供,以下是小编帮大家整理后的高一必修1物理知识点,仅供参考,希望能够帮助到大家。

篇1:高一物理必修1知识点

第一章运动的描述

第一节认识运动

机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

运动的特性:普遍性,永恒性,多样性

参考系

1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。

2.参考系的选取是自由的。

1)比较两个物体的运动必须选用同一参考系。

2)参照物不一定静止,但被认为是静止的。

质点

1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

2.质点条件:

1)物体中各点的运动情况完全相同(物体做平动)

2)物体的大小(线度)<<它通过的距离

3.

未完,继续阅读 >

第4篇:高一物理必修一知识点总结

高一物理必修一知识点总结

总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以帮助我们总结以往思想,发扬成绩,我想我们需要写一份总结了吧。但是总结有什么要求呢?以下是小编帮大家整理的高一物理必修一知识点总结,希望对大家有所帮助。

高一物理必修一知识点总结1

第一节探究形变与弹力的关系

认识形变

1.物体形状回体积发生变化简称形变。

2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。

按效果分:弹性形变、塑性形变

3.弹力有无的判断:1)定义法(产生条件)

2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。

3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。

弹性与弹性限度

1.物体具有恢复原状的性质称为弹性。

2.撤去外力后,物体能完全恢复原状的形

未完,继续阅读 >

第5篇:高一物理必修二知识点总结

高一物理必修二知识点总结

高一物理必修二、三章单元复习及测试题

第二、三章 归纳·总结·专题

一、单元知识网络

物体的运动:

运动的描述:

匀变速直线运动的研究:

1. 匀变速直线运动

②运动规律:

二. 方法归纳总结

1. 科学抽象——物理模型思想

这是物理学中常用的一种方法。在研究具体问题时,为了研究的方便,抓住主要因素,忽略次要因素,从实际问题中抽象出理想模型,把实际复杂的问题简化处理。如质点、匀速直线运动、匀变速直线运动等都是抽象了的理想化的物理模型。

2. 数形结合思想

本章的一大特点是同时用两种数学工具:公式法和图像法描述物体运动的规律。把数学公式表达的函数关系与图像的物理意义及运动轨迹相结合的方法,有助于更透彻地理解物体的运动特征及其规律。

3. 极限思想

在分析变速直线运动的瞬时速度和位移时,我们采用无

未完,继续阅读 >

第6篇:高一物理必修一知识点总结

高一物理必修一知识点总结

漫长的学习生涯中,看到知识点,都是先收藏再说吧!知识点就是掌握某个问题/知识的学习要点。相信很多人都在为知识点发愁,下面是小编精心整理的高一物理必修一知识点总结,欢迎大家分享。

高一物理必修一知识点总结 1

第一章运动的描述

第一节认识运动

机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

运动的特性:普遍性,永恒性,多样性

参考系

1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。

2.参考系的选取是自由的。

1)比较两个物体的运动必须选用同一参考系。

2)参照物不一定静止,但被认为是静止的。

质点

1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

2.质点条件:

1)物体中

未完,继续阅读 >

第7篇:高一物理必修1重要知识点

高一物理必修1重要知识点(共4篇)由网友 “玉面小泡芙” 投稿提供,下面是小编整理过的高一物理必修1重要知识点,希望能帮助到大家!

篇1:高一物理必修1重要知识点

重力G(N)G=mg;m:质量;g:9.8N/kg或者10N/kg

密度ρ(kg/m3)ρ=m/Vm:质量;V:体积

合力F合(N)方向相同:F合=F1+F2[6]

方向相反:F合=F1-F2方向相反时,F1>F2

浮力F浮(N)F浮=G物-G视;G视:物体在液体的视重(测量值)

浮力F浮(N)F浮=G物;此公式只适用物体漂浮或悬浮

浮力F浮(N)F浮=G排=m排g=ρ液gV排;G排:排开液体的重力,m排:排开液体的质量,ρ液:液体的密度,V排:排开液体的体积(即浸入液体中的体积)

杠杆的平衡条件F1L1=F2L2;F1:动力,L1:动力臂,F2:阻力,

未完,继续阅读 >

下载高一物理必修知识点总结报告word格式文档
下载高一物理必修知识点总结报告.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文