第1篇:百分数应用题及答案
百分数应用题及答案
百分数是数学学习中的重点,那么相关的应用题又是怎么出题的呢?下面是小编推荐给大家的百分数的应用题及答案,希望大家有所收获。
百分数应用题及答案1
1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?
2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?
3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?
4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?
5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?
6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?
6、比5分之2吨少20%是( )吨,( )吨的30%是60吨。
7、一本200页的书,读了20%,还剩下( )页没读。甲数的40%与乙数的50%相等,甲数是120,乙数是( )。
8、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
9、 张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?
10、 小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?
11、 一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。
参考答案
1、今年产值是3000万元
2、这时有苹果440箱(原来有苹果400箱)
3、原价是822.40元
4、存的本金是19488.81元
5、卖出这两件衣服赔了10元钱
6、3年前女儿年龄是爸爸的20%
7、0.32吨;200吨
8、还剩下160页;乙数是96
9、上半月用水6750吨
10、第一种方法得到的税后利息多一些(19.44元;18.16元)
11、所交利息税为22.5元
12、需要这样的小麦16吨
百分数应用题及答案2
一、填空。(20分)
(1)把5米长的铁丝平均截成8段,每段长( )米,每段是5米的( )( )。
(2)在下面的括号里填上适当的分数。
28平方分米=( )平方米70厘米=( )米 17千克=( )吨
(3)1128的分数单位是( ),它有( )个这样的分数单位。
(4)在下面的○里填上“>”、“<”或“=”符号。
14○0.12599○13○3566.5千克○615千克
(5)在下面的括号里填上适当的数。
2030是( )个215 0.875=7( )=( )32=35( )
(6)12和9的最大公因数是( ),最小公倍数是( )。
24和36的最大公因数是( ),最小公倍数是( )。
(7)一项工程必须在20天完成,平均每天完成全部工程的( )( )。9天完成这项工程的( )( )。11天完成这项工程的( )( )。
(8)两个数的最小公倍数是180,最大公因数是30,其中一个数是90,另一个数是()。
(9)一个最简分数,如果能化成有限小数,它的分母中只含有质因数()。
(10)b和t是互质数,它们的最大公因数是( ),最小公倍数是( )。
二、判断题(每题2分,共10分)
1、把一个苹果分成4份,每份占这个苹果的14。………………………()
2、真分数总是小于假分数。………………………………………………()
3、男生人数是女生人数的34,则女生人数是男生人数的43。…………()
4、最简分数的分子和分母没有公约数。…………………………………()
5、在5a这个分数中,a可以是任意一个整数。…………………………()
三、选择题。将正确答案的序号填在题中的括号里。(每题2分,共10分)
(1)47米表示的意义是把()平均分成7份,表示其中的4份。
①4米 ②1米 ③单位1
(2)一个分数,分子不变,分母扩大4倍,这个分数值就( )
①不变 ②扩大4倍 ③缩小4倍
(3)甲每小时做7个零件,乙每小时做8个零件,做一个零件( )
①甲用的时间多 ②乙用的时间多 ③两人用的时间同样多。
(4)把一个分数约分,用分子和分母的( )去约,比较简便。
①公约数 ②最小公倍数 ③最大公因数
(5)12是36和24的( )
①最小公倍数 ②最大公因数 ③公倍数
四、把下面的假分数化成带分数或整数。(5分)
479 906 2817 474 238
五、把下面的分数约分,是假分数的要化成带分数或整数。(5分)
3648 2012 13672 14028 2835
六、把下面各组分数通分。(10分)
1324和2372 79和1315 512、78和1116
730、910和1115 2512、423和345
七、(1)把下面的小数化成分数。(4分)
0.6 1.93.25.87584.125
(2)下面的分数化成小数,(除不尽的保留两位小数)。(4分)
35843205711114079
(3)把0.28270.51413按从小到大的顺序排列。(2分)
八、解决问题。(30分,每题5分)
(1)五(4)班有学生48人,三好学生有31人,三好学生的人数各占全班人数的几分之几?
(2)一本科技书,小明看过80页,还剩下31页没有看,看过的和没有看过的各占这本书总页数的几分之几?
(3)何师傅每隔6天值一次班,陈师傅每隔8天值一次班,今天他们同时值班,至少要过多少天他们又同时值班?
(4)解放军进行军事训练,第一天4小时行了58千米,第二天5小时走了73千米,哪一天走得快些?
(5)一项工程,甲队单独完成要11天,乙队单独完成要15天,两队各做5天,分别完成这件工作的几分之分?谁做得多?
(6)有张长方形花纸,长80CM,宽50CM,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最长是多少厘米?能剪出多少小这样的小正方形?
百分数应用题及答案3
1.把下面各数化成百分数:
0.27=1.52=0.5=0.08=
3.28=10.06=32=0.005=
2.把下面百分数化成小数或整数:
52%=1.23%=248%=70%=
0.4%=15%=100%=2000%=
3.分别用分数、小数、百分数表示下面各图中的阴影部分:
分数()分数()分数()分数()
小数()小数()小数()小数()
百分数()百分数()百分数()百分数()
4.37%的计数单位是(),它有()个这样的单位。
5.六年级一班跳绳测验全部合格,可以用百分数()来表示。
6.把5.6%的'百分号去掉,这个百分数就会扩大()倍。
7.把下面各组数从小到大排列。
(1)6.5%650%0.060.65(2)2.7527.5%270%2.57
6.5%=2.75=
650%=27.5%=
0.06=270%=
0.65=2.57=
8.在括号里填上“>”、“<”或“=”。
0.67()67%31.3()313%260%()2.6()100%
1%()0.10.25()25%50%()0.3()0.3%
9.某厂男工320人,女工180人。男工人数是女工人数的几倍?女工人数是男工人数的几分之几?男工人数比女工人数多几分之几?女工人数比男工人数少几分之几?
百分数应用题及答案4
在数学中,有一些比例也被许多人认为认为是美的。大家准备了百分数单元检测试题,帮助大家学好数学,了解数学的美。
1、今年稻谷产量是去年的125%,125%表示把( )看作单位“1”,今年稻谷产量比去年增产( )%。
二、选择题(每题2分,共20分)
1、大于3%而小于6%的百分数有( )个。
A、3 B、4 C、10 D、无数
2、0.8化成百分数是( )。
A、0.8% B、80% C、8% D、0.08%
3、把15.5%的百分号去掉,这个数就( )。
A、大小不变 B、扩大10倍 C、缩小100倍 D、扩大100倍
六、文字题(8分)
1、一个数减少它的20%后是80,这个数是多少?
甲数的25%与乙数的75%相等,乙数是40,甲数是多少?
七、应用题(每题6分,共30分)
1、三年级图书角有科技书36本,文艺书40本。
(1)科技书的本数是文艺书的百分之几?
(2)文艺书的本数是科技书的百分之几?
2、六(1)班同学在春季进行植树活动,成活了195棵,有5棵没有成活,求这次植树活动树苗的成活率。
3、化肥厂今年生产化肥1200万吨,比去年多生产300万吨。今年生产的化肥是去年的百分之几?
4、某电冰箱厂九月份共生产20000台冰箱,经检验有0.1% 冰箱不合格,这个厂九月份生产了多少台合格的冰箱?
5、修一条水渠,第一天修了全长的25%,第二天修了全长的30%,还剩下900米没修。这条水渠全长多少米?
百分数应用题及答案5
一、列式计算
1.5与2的差比1多多少?
2.一个数比20与3的和少2,这个数是多少?
二、应用题
1.工程队修一段公路,第一天修了4千米,第二天修了5千米,还剩9千米,这段公路全长多少千米?
2.一只货船第一小时航行6千米,第二小时比第一小时多航行1千米,第三小时比第二小时多航行千米,这只货船第三小时航行多少千米?
3.修一条水渠,第一天修了全长的,第二天修了全长的,还剩全长的几分之几没有修?
参考答案
一、列式计算
1.-2-1=-3
2.20+3-2=21
二、应用题
1.
答:这段公路全长19千米。
2.
答:这只货船第三小时航行8千米。
3.
答:还剩全长的没有修。
百分数应用题及答案6
一、我会填。
1.分数加法、减法、乘法混合在一起的时候,运算顺序跟( )的运算顺序相同。
2.在计算3/12-1/3×1/2时,应先算( )法,得( );后算( )法,得( )。
3.在计算( 2/3+1/3)×1/8时,应先算( )法,得( );后算( )法,得( )。
4.( 1/3+2/5)×15=1/3×15+2/5×15,这里运用了乘法的( )律。
5.1/6×5/7×14/15=1/6×( × )
30×(4/15+2)= × + ×
二、在 里填上“”、“”或“=”。
4/5×1/3 1/3×4/5 5/12×3/7×4/24 5/12×4/26×1/2
(1/4×1/7)×28 2/11×28 125×8+125×3/25 125×(8+3/25)
三、计算下面各题。
10-1/2×8/11 4/5×1/2+3/10 12×2/9-2/3
3/4+3/5×1/6 24×(1/4+5/6) 7/8×2/14+1/4
四、用简便方法计算下面各题。
5/3×48×3/5 8/27×(54×125) 1/36×2/5+1/36×3/5
99×(7/99+7/99) 4/19×(25×38) 41×7/12+79×7/12
五、列式计算。
1.4/7与3/14的和的4倍是多少? 2.4/5与3/4的差的一半是多少?
3.4/5吨的5/12比3/4吨的1/3多多少吨?
六、解决问题。
1.一个平行四边形,底是3/4米,高是底的2/3,求它的面积。
2.一台拖拉机耕一块地,每小时可以耕3/4公顷,耕了2/3小时后还剩1/6公顷。这块地有多少公顷?
3.王叔叔捏小泥人卖,捏一个孙悟空要用7/20千克的面泥,捏一个小松鼠比捏一个孙悟空少用1/10千克的面泥,现在要捏50个小松鼠,需要多少千克的面泥?
七、用简便方法计算。
4/5×4+2/5×2+1/5×16 (17/2×9/50)×30/17×125
第2篇:等比数列应用题及答案
等比数列应用题及答案
想要在考试中考出理想成绩,那么平常的练习就一定要认真去对待。下面是小编整理收集的等比数列应用题及答案,欢迎阅读!
一、选择题
1.等比数列{an}中,a1=2,q=3,则an等于()
A.6 B.32n-1
C.23n-1 D.6n
答案:C
2.在等比数列{an}中,若a2=3,a5=24,则数列{an}的通项公式为()
A.322n B.322n-2
C.32n-2 D.32n-1
解析:选C.∵q3=a5a2=243=8,q=2,而a1=a2q=32,an=322n-1=32n-2.
3.等比数列{an}中,a1+a2=8,a3-a1=16,则a3等于()
A.20 B.18
C.10 D.8
解析:选B.设公比为q(q1),则
a1+a2=a1(1+q)=8,
a3-a1=a1(q2-1)=16,
两式相除得:1q-1=12,解得q=3.
又∵a1(1+q)=8,a1=2,
a3=a1q2=232=18.
4.(2010年高考江西卷)等比数列{an}中,|a1|=1,a5=-8a2,a5>a2,则an=()
A.(-2)n-1 B.-(-2)n-1
C.(-2)n D.-(-2)n
解析:选A.∵|a1|=1,
a1=1或a1=-1.
∵a5=-8a2=a2q3,
q3=-8,q=-2.
又a5>a2,即a2q3>a2,
a2<0.
而a2=a1q=a1(-2)<0,
a1=1.故an=a1(-2)n-1=(-2)n-1.
5.下列四个命题中正确的是()
A.公比q>1的等比数列的各项都大于1
B.公比q<0的等比数列是递减数列
C.常数列是公比为1的等比数列
D.{lg2n}是等差数列而不是等比数列
解析:选D.A错,a1=-1,q=2,数列各项均负.B错,a1=1,q=-1,是摆动数列.C错,常数列中0,0,0,…,不是等比数列.lg2n=nlg2,是首项为lg2,公差为lg2的等差数列,故选D.
6.等比数列{an}中,a1=18,q=2,则a4与a8的等比中项是()
A.4 B.4
C.14 D.14
解析:选A.由an=182n-1=2n-4知,a4=1,a8=24,其等比中项为4.
二、填空题
7.若x,2x+2,3x+3是一个等比数列的连续三项,则x的值为__________.
解析:由于x,2x+2,3x+3成等比数列,
2x+2x=3x+32x+2=32且x-1,0.
2(2x+2)=3x,x=-4.
答案:-4
8.等比数列{an}中,若an+2=an,则公比q=__________;若an=an+3,则公比q=__________.
解析:∵an+2=an,anq2=an,q=1;
∵an=an+3,an=anq3,q=1.
答案:1 1
9.等比数列{an}中,a3=3,a10=384,则该数列的通项公式为an=________.
解析:a3=a1q2=3,a10=a1q9=384.
两式相比得q7=128,q=2,a1=34.
an=a1qn-1=342n-1=32n-3.
答案:32n-3
三、解答题
10.已知数列{an}满足:lgan=3n+5,求证:{an}是等比数列.
证明:由lgan=3n+5,得an=103n+5,
an+1an=103n+1+5103n+5=1000=常数.
{an}是等比数列.
11.已知{an}为等比数列,a3=2,a2+a4=203,求{an}的通项公式.
解:设等比数列{an}的公比为q,
则q0.a2=a3q=2q,a4=a3q=2q,
2q+2q=203.解得q1=13,q2=3.
当q=13时,a1=18,
an=18(13)n-1=233-n.
当q=3时,a1=29,
an=293n-1=23n-3.
综上,当q=13时,an=233-n;
当q=3时,an=23n-3.
12.一个等比数列的'前三项依次是a,2a+2,3a+3,则-1312是否是这个数列中的一项?如果是,是第几项?如果不是,请说明理由.
解:∵a,2a+2,3a+3是等比数列的前三项,
a(3a+3)=(2a+2)2.
解得a=-1,或a=-4.
当a=-1时,数列的前三项依次为-1,0,0,
与等比数列定义矛盾,故a=-1舍去.
当a=-4时,数列的前三项依次为-4,-6,-9,
则公比为q=32, an=-4(32)n-1,
令-4(32)n-1=-1312,
即(32)n-1=278=(32)3,
n-1=3,即n=4,
-1312是这个数列中的第4项.
第3篇:行程应用题及答案
行程应用题及答案(整理8篇)由网友 “frog169” 投稿提供,下面是小编整理过的行程应用题及答案,欢迎您能喜欢,也请多多分享。
篇1:行程应用题及答案
行程应用题及答案
1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.
解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇
第4篇:平均数应用题及答案
平均数应用题及答案
应用题是数学中典型的练习,以下是小编整理的平均数应用题及答案,欢迎阅读参考!
例1. 妈妈买来香蕉 5千克,每千克2.4元;梨4千克,每千克3.2元;贡桔11千克,每千克4.2元。妈妈买的这些水果平均每千克多少元?
分析:要求水果平均每千克多少元,就要求出这几种水果的总价和总重量,最后求平均数,即平均每千克水果的价钱。
解:(2.4×5+3.2×4+4.2×11)÷(5+4+11)
=(12+12.8+46.2)÷20
=71÷20
=3.55(元)
答:妈妈买的这些水果平均每千克3.55元。
例2. 小明期末数学、语文、艺术、综合实践平均成绩为90分,加上体育成绩后,五门功课的平均分数下降了2分,小明体育考了多少分?
分析一:由小明期末四门功课的平均分数,可以求出四门功课的总分数,五门功课的
第5篇:一元一次方程应用题及答案
1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?
设慢车开出a小时后与快车相遇 50a+75(a-1)=275 50a+75a-75=275 125a=350 a=2.8小时
2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离。
设原定时间为a小时 45分钟=3/4小时 根据题意
40a=40×3+(40-10)×(a-3+3/4)40a=120+30a-67.5 10a=52.5 a=5.25=5又1/4小时=21/4小时 所以甲乙距离40×21/4=210千米
3、某车间的钳工班,分两队参见
第6篇:五年级应用题及答案
五年级应用题及答案
应用题是考查学生的综合解题能力的,以下是小编整理的苏教版二年级上册语文期中试题,欢迎参考阅读!
苏教版二年级上册语文期中试题1
1.一个工程队每天筑路85米。照这样计算,4个工程队7天筑路多少米?
(1)85×4×7=2380(米) (2)4×7×85=2380(米)
2. 电扇厂5个车间30天生产电扇2250台,平均每个车间每天生产电扇多少台?(解答后再检验)
(1)2250/(5×30) =15(台) (2)2250/5/30=15(台)
3. 李师傅每小时加工零件49个,张师傅每小时加工零件54个,两人各做8小时,李师傅比张师傅少做多少个?
(1)54×8--49×8=40(个) (2)(54—49)×8=40(个)
4. 水果店运来苹果和梨子各25筐,苹果每筐6千克,梨子每筐8千克,