初二数学矩形教案设计

精品范文 时间:2022-11-15 08:28:09 收藏本文下载本文

第1篇:初二数学矩形教案设计

初二数学矩形教案设计

初二数学矩形教案设计

矩形

一、教学目标:

1。理解并掌握矩形的判定方法。

2。使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

二、重点、难点

1。重点:矩形的判定。

2。难点:矩形的判定及性质的综合应用。

三、例题的意图分析

本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的'题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的。

四、课堂引入

1。什么叫做平行四边形?什么叫做矩形?

2。矩形有哪些性质?

3。矩形与平行四边形有什么共同之处?有什么不同之处?

4。事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

通过讨论得到矩形的判定方法。

矩形判定方法1:对角钱相等的平行四边形是矩形。

矩形判定方法2:有三个角是直角的四边形是矩形。

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了。因为由四边形内角和可知,这时第四个角一定是直角。)

五、例习题分析

例1(补充)下列各句判定矩形的说法是否正确?为什么?

(1)有一个角是直角的四边形是矩形;(×)

(2)有四个角是直角的四边形是矩形;(√)

(3)四个角都相等的四边形是矩形;(√)

(4)对角线相等的四边形是矩形;(×)

(5)对角线相等且互相垂直的四边形是矩形;(×)

(6)对角线互相平分且相等的四边形是矩形;(√)

(7)对角线相等,且有一个角是直角的四边形是矩形;(×)

(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

(9)两组对边分别平行,且对角线相等的四边形是矩形。(√)

指出:

(l)所给四边形添加的条件不满足三个的肯定不是矩形;

(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论。

第2篇:《矩形》优秀教案设计

教学目标

知识与技能:

了解矩形的有关概念,理解并掌握矩形的有关性质.

过程与方法:

经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.

情感态度与价值观:

培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.

重难点、关键

重点:掌握矩形的性质,并学会应用.

难点:理解矩形的特殊性.

关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.

教学准备

教师准备:投影仪,收集有关矩形的图片,制作教具.

学生准备:复习近平行四边形性质,预习矩形这节内容.

学法解析

1.认知起点:已经学习了三角形、平行四边形,积累了一定的经验的基础上学习本节课内容.

2.知识线索:情境与操作→平行四边形→矩形→矩形性质.

3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.

教学过程

一、联系生活,形象感知

【显示投影片】

教师活动:演示平行四边形的形状变化的动态效果,让学生观察变化,引出发现。

矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).

教师活动:介绍完矩形概念后,为了加深理解也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:

问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)

学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,是属于平行四边形,因此它具有平行四边形所有性质.

问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问)

学生活动:由平行四边形对边平行以及刚才变角∠α为90°可以得到∠α的补角也是90°,从而得到矩形四个角都是直角.

性质定理1:矩形的四个角都是直角.

几何语言:∵四边形ABCD是矩形

∴∠A=∠B=∠C=∠D=90度

评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.

教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).

学生活动:观察发现:矩形的两条对角线相等,口述证明过程是:充分利用(SAS)三角形全等来证明.

口述:∵四边形ABCD是矩形

∴∠ABC=∠DCB=90°,AB=DC

又∵BC为公共边

∴△ABC≌△DCB(SAS)

∴AC=BD

性质定理2:矩形的对角线相等.

几何语言:∵四边形ABCD是矩形

∴ AC = BD

教师提问:

1.图中有几个三角形?它们分别是什么三角形?

2.在直角△ABC中,OB与AC之间有什么数量关系?为什么?由此你会得出什么结论?

学生活动:观察、思考后发现AO= AC,BO= BD,BO是Rt△ABC的中线.由此归纳直角三角形的一个性质:

直角三角形斜边上的中线等于斜边的一半.

直角三角形中,30°角所对的边等于斜边的一半(师生回忆).

【设计意图】采用观察、操作、交流、演绎的手法来解决重点突破难点.

二、范例点击,应用所学

例1如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=4cm,求矩形对角线的长.(投影显示)

思路点拨:利用矩形对角线相等且平分得到OA=OB,由于∠AOB=60°,因此,可以发现△AOB为等边三角形,这样可求出OA=AB=4cm,∴AC=BD=2OA=8cm.

【活动方略】

教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程

学生活动:参与教师讲例,总结几何分析思路.

三.随堂练习,巩固深化

1.矩形具有而一般平行四边形不具有的性质是()

A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分

2.判断对错

(1)矩形是平行四边形()

(2)矩形的两条对角线将矩形分成四个面积相等的等腰三角形()

3.已知△ABC是Rt△,∠ABC=90度,BD是斜边AC上的中线。

(1)若BD=3㎝则AC= _______㎝

(2)若∠C=30°,AB=5㎝,则AC=_____ cm, BD=_____ ㎝.4.四边形ABCD是矩形

1.若已知AB=8㎝,AD=6㎝,则AC=_______㎝,OB=_______ ㎝

2.若已知AC=10㎝,BC=6㎝,则矩形的周长=____ cm

矩形的面积=_______

若已知 ∠DOC=120°,AC=8㎝,则AD= _____cm

AB= _____cm

5.矩形的短边长为3cm,两对角线所成的角是60 °,则它的另一边长是_______cm

6.已知矩形对角线长为4cm,一边长为是_______ cm,则矩形的面积是________.四.课堂小结

矩形定义:有一个角是直角的平行四边形叫做矩形.

矩形是轴对称图形。

性质定理1:矩形的四个角都是直角.

性质定理2:矩形的对角线相等.

直角三角形斜边上的中线等于斜边的一半.

五.拓展应用

如右图,在矩形ABCD中,DE平分∠ADC交AC于E,交BC于F,若∠BDF=15度,求∠COF的度数.六.作业

必做题

教与学整体设计练案《矩形第(1)课时》

选做题

如右图:在ABCD矩形中AB=6cm,BC=8cm,将矩形折叠,使B点与点D重合,求折痕EF的长。

第3篇:《矩形》优秀教案设计

《矩形》优秀教案设计

教学目标

知识与技能:

了解矩形的有关概念,理解并掌握矩形的有关性质.

过程与方法:

经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.

情感态度与价值观:

培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.

重难点、关键

重点:掌握矩形的性质,并学会应用.

难点:理解矩形的特殊性.

关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.

教学准备

教师准备:投影仪,收集有关矩形的图片,制作教具.

学生准备:复习近平行四边形性质,预习矩形这节内容.

学法解析

1.认知起点:已经学习了三角形、平行四边形,积累了一定的经验的基础上学习本节课内容.

2.知识线索:情境与操作→平行四边形→矩形→矩形性质.

3.学习方式:观察、操作、感知其演变,以合作

未完,继续阅读 >

第4篇:初二数学矩形(二)教学方案

初二数学矩形(二)教学方案(锦集13篇)由网友 “lazysillyg” 投稿提供,下面小编为大家整理过的初二数学矩形(二)教学方案,欢迎阅读与借鉴!

篇1:初二数学矩形(二)教学方案

初二数学矩形(二)教学方案

一、教学目标:

1.理解并掌握矩形的判定方法.

2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

二、重点、难点

1.重点:矩形的判定.

2.难点:矩形的判定及性质的综合应用.

三、例题的意图分析

本节课的三个例题都是补充题,例1在的`一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.

四、课堂引入

1.什么叫做平行四

未完,继续阅读 >

第5篇:八年级下册:矩形教案设计

矩形

一、教学目标:

知识与技能:

1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.

2、会初步运用矩形的概念和性质来解决有关问题.

过程与方法:经历探索矩形的概念和性质的过程,发展学生合情推理的意识;掌

握几何思维方法。并渗透运动联系、从量变到质变的观点.

情感态度与价值观:培养严谨的推理能力,以及自主合的精神,体会逻辑推理的思维价值。重点:矩形的性质。

难点:矩形的性质的灵活运用。

二、教学过程

1、课堂引入:列举生活中的有关正方形与长方形的事物,并与平行四边形的相关概念结合,引出本课题及矩形定义。

矩形定义:有一个角是直角的平行四边形叫做矩形。

2、学习研究教科书P94的“探究”,让学生思考、交流、归纳后得出矩形的性质: 矩形的性质1:矩形的四个角都是直角; 矩形的性质2:矩形的对角线相等。

3、通过

未完,继续阅读 >

第6篇:《矩形》初二的数学教案

《矩形》初二的数学教案

一、教学目标

1.掌握矩形的定义,知道矩形与平行四边形的关系.

2.掌握矩形的性质定理.

3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

4.通过性质的学习,体会矩形的应用美.

二、教法设计

观察、启发、总结、提高,类比探讨,讨论分析,启发式.

三、重点、难点及解决办法

1.教学重点:矩形的性质及其推论.

2.教学难点:矩形的本质属性及性质定理的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

六、师生互动活动设计

教具演示、创设情境,观察猜想,推理论证

七、教学步骤

【复习提问】

什么叫平行四边形?它和四边形有什么区别?

【引入新课】

我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外

未完,继续阅读 >

第7篇:初中数学矩形说课稿

关于初中数学矩形说课稿,学生学习了本课,要能应用矩形定义、判定等知识,解决简单的证明题和计算题,下面由小编为您整理出的相关内容,一起来看看吧。

各位评委、各位老师:

你们好!今天我要为大家讲的课题是《矩形的判定》,根据新课标理念,对应本节,我将以教什么、怎样教以及为什么这样教为思路,从教材分析、教学目标分析、教学策略分析、教学过程分析四个方面加以说明。

一、教材分析(说教材):

①教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。

②教学目标:

1、通过探索和交流使学生逐步得出

未完,继续阅读 >

第8篇:初中数学《矩形》教案

初中数学《矩形》教案

一、教学目标

1.理解并掌握矩形的判定方法.

2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

二、重点、难点

1.重点:矩形的判定.

2.难点:矩形的判定及性质的综合应用.

三、例题的意图分析

本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的'.

四、课堂引入

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长

未完,继续阅读 >

下载初二数学矩形教案设计word格式文档
下载初二数学矩形教案设计.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文