将数学建模思想渗透到高职院校数学课堂教学研究中论文

精品范文 时间:2022-11-12 06:28:45 收藏本文下载本文

第1篇:将数学建模思想渗透到高职院校数学课堂教学研究中论文

将数学建模思想渗透到高职院校数学课堂教学研究中论文

1在高职数学课堂教学中渗透建模思想是必要的

我国高等职业技术教育的目标是培养社会主义现代化建设需要的一线高技能型人才,因此培养学生能力至关重要。数学教育在人才培养中有着不可替代的重要作用,高速发展的现代科技对人才的数学素质、应用数学的意识与能力已经提出了更高的要求。现在高职学院数学教学已不太适应社会发展的需求,需要进行教学改革。数学建模对培养学生的思维、提高数学应用意识、培养数学素养等方面起着重要的作用,在数学教学改革中渗透数学建模思想是非常必要的,也是可行的。

传统的数学让许多学生感觉高深莫测、枯燥无味的原因之一,是学生很难把数学知识和实际问题联系在一起。在高职学院数学课堂教学中渗透数学建模思想、方法,把数学知识与数学应用有机的结合在一起,能增强数学学习的目的性,加强学生的应用意识,有利于提高学生学习数学的积极性,更好的学习、掌握、应用数学的思想、方法,提高学生的综合素质。如何在课堂教学中渗透数学建模思想是非常值得研究的。

2关于在课堂教学中渗透建模思想的研究

建立数学模型就是用数学语言描述实际现象的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程,是运用数学的语言、方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。通常数学建模的过程包括:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验、修正及模型的应用与推广等。在日常的数学课堂教学中完整展示以上过程是有难度的。我们不妨把数学建模分成两个模块。第一部分是将现实生活中的实际问题的内在规律抽象为数学问题,构建数学模型;第二部分是求解数学模型检验、修正、应用。显然传统数学课程教学侧重于求解,然而实际应用中模型的构建是十分关键、同时也是十分困难的一步。同时在构建数学模型中数学语言与实际问题之间的“双向”翻译也特别重要,如果不能将实际问题用数学语言翻译出来,那么将无法完成数学模型的建立。我们可以充分利用微积分中蕴藏的数学模型题材,突破这个难点,比如定积分概念的教学。下面以定积分概念的教学为例,探讨如何将数学建模思想渗透到高职院校数学课堂教学之中。

3《定积分概念》的教学设计

定积分在微积分学中占有非常重要的地位。正确、深刻的理解、掌握定积分的概念,有助于运用定积分的微元思想解决实际问题,达到学以致用的目的。

传统定积分概念授课方式是照讲解两个引例,即引例1:求曲边梯形面积;引例2:求作变速直线运动物体的位移,通过引例的结论过度到定积分的概念。当前高职学生的数学基础普遍较差,难以接受用大量数学语言讲解的引例,特别是在校高职生普遍对数学语言不太熟悉,对定积分这样大段落数学语言表述的概念更觉得难以理解。如何引导高职学生学习掌握定积分这个重要的概念?针对当前高职学生现状,为突破教学重难点,笔者选择把课堂教学重点放在引例1上,渗透数学建模的思想方法,将引例一讲清楚、讲透彻。引例1的讲解是采用螺旋式的方法:分步讲授,逐层递进。分三部分逐层讲解,具体如下:

第一步:按照构建数学模型(模块1)的思路讲解。①提出具体问题:求自然界中任意一片树叶的面积;②通过对具体问题的分析讨论,抽象出主要问题:如何求曲边梯形的面积;③提出初步的解决方案:分割、近似。④提出问题:如何提高近似程度。分析得出结论:分割越细,近似程度越好。将上述过程小结为“分割、近似、求和”。实际教学中,这一步学生都能够理解、掌握。

第二步:采用螺旋式的讲解方法,对第一步中得到的结论细化。用数学语言表述“分割、近似、求和”等步骤。如:在“分割”中用插人分点的方式分割曲边梯形,逐步使用数学语言表述出学生已经认同的结论,学生比较容易接受一些。

进一步讨论第一步的结论:分割越细,近似程度越好。借助计算机辅助教学,取不同的数值,引导学生观察数值变化趋势。运用极限将普通的近似计算进行升华,用和式的极限解决曲边梯形面积的`计算问题·在此,学生不仅解决了实际生活中的问题,还能更深刻的理解、运用极限运算。

需要注意的是,为了突出重点,小区间的划分方式、毛的取法等问题放在第三步中解决。

第三步:完整的用数学语言将求曲边梯形的过程叙述一遍,并分析、探讨小区间的划分方式、毛,的取法对运算结果的影响。最后提出问题:上述解决问题的方法能应用于其它问题上吗,顺利进人对引例2的讲解。这正对应着数学建模第2模块中的检验、修正、应用。数学模型的检验、修正、应用在解决实际问题时非常重要,但在传统数学教学中常常被弱化。

通过对二个引例的分析、讨论得到的结论,最后抽象出的定积分概念不再让学生感到畏惧。在教学中通过渗透建立数学模型思想、方法,帮助学生更好地掌握了定积分的概念。学生对那些大段的数学语言不再那么陌生,降低了学习难度,消除学生心中对学习高等数学的恐惧,同时将数学思维的方式、方法以润物细无声的方式植人学生的大脑中,为学生今后的发展打好基础。通过对比试验也证明这种教学模式的教学效果优于传统教学方式。

第2篇:高职数学建模思想探讨论文

高职数学建模思想探讨论文

【摘要】在计算机技术飞速发展的今天,数学不再仅仅是一门抽象的学科,计算机技术与数学的结合,使得数学建模在未来的各个行业大有可为.数学作为高职院校中基础或必修课程,同时,高职数学教学应以解决当前实际问题为出发点,让学生既掌握课堂数学知识,又能在实际生活中更好地应用数学,所以,将数学建模思想融入高职教学课堂尤为重要,本文以让数学更好地提高高职高专生的水平为出发点,通过数学建模,来慢慢实现数学向应用型学科的转变.

【关键词】数学建模;高职数学教学;教学改革

在高职教育中,数学既是基础课程,又是某些行业的专业课程,但现在高职的现状,由于对数学在高职教育重要性认识不足等原因,使得大部分学生没有足够牢固的数学基础,通过近些年来对于数学建模进行培训的工作总结,认识到了数学建模的思维有助于培养和提高学生在实际中解决问题的能力.如今,如何在高职数学教学中将数学建模思想和方法融入进去,成为高职院校开展数学建模的重要课题之一.

一、为什么要将数学建模应用于在高职数学教学中

数学建模是把实际问题与数学联系起来的中介,实际问题的解决,依靠的是数学的思维思想方法.数学建模的中心思想,以解决实际问题为主线,以学生掌握为中心,以培养解决实际应用能力及创新能力为目标.通过数学建模,把课堂所学的数学知识用到实践中,有助于让学生能够直观地感受到数学的价值,进而使学生对学习数学产生兴趣,并且提高了学生运用所学到的知识的能力,提高学生应用数学的能力.

(一)培养学生的逻辑能力与发散思维意识.数学建模要求学生能够对于自己学到的数学知识和数学思想进行分析,充分发挥自己的想象力,创造力与发散的思维能力,最后总结出一个能最大限度地描述出现的实际问题的数学模型,在通过利用计算机与一些可以使用的数学理论与方法进行计算,得出结论,通过实践证明,现实中看似一些联系微弱的甚至毫无关联的实际问题,通过使用数学建模方法,最后会得到基本相同的数学模型.这就需要学生们灵活的应用所学知识,利用总结归纳,类比归纳,从一般到特殊等数学思想,同时也需要培养学生勇于创新,不甘于现状的`优秀品质.

(二)培养和提高学生学习数学的兴趣.随着社会的进步,对技术性工作人员提出了更高的要求,其数学素养要比较高.然而现在很多学生对数学的认识不到位,觉得数学不过是计算教材上的例题及应付考试的工具,甚至认为大学数学没什么用处.练习使用数学建模有助于改变学生的这种思维.因为通过数学建模和频繁地使用所学到的数学知识,就可以感受到数学的应用价值,从而使学生对学习数学产生兴趣.

(三)提高学生使用计算机的能力.随着社会的进步和计算机越来越普遍的应用,大数据时代的来临,以及科学技术的发展,现今有了很多计算功能很强大的数学软件,使得很多比较烦琐的数学计算变得简单了许多,也使得现在许多领域更广泛的使用计算机.而数学模型的求解,往往存在巨大的计算量,所以使用计算机和数学软件是很有必要的,学生通过使用数学建模,也有助于使学生能够更加熟练使用计算机和数学软件,对于提高学生使用计算机来解决数学问题的能力有促进作用,使得学生更具有竞争力.

二、如何在高职数学教学中渗入数学建模的思想

高职教学的目的是培养高等技能应用人才,这些人才都拥有一项或多项高等技能.学生参加工作后经常需要利用数学知识和专业知识技能,还有多方面的综合知识,通过建立数学模型解决实际问题.高职教育要在信息化如此之高的时代培养出具有强有力竞争的高技术应用型人才,面对的难度可想而知,因此,高职数学教学把数学建模引入其中已是势在必行.

(一)构建科学合理的高职数学教学体系和比较完善的教学大纲.一份好的教学大纲有助于提高数学教学质量,也有助于培养高等技能人才,是安排教学进度和任务的根据.制订科学的教学计划、设置合理的教学内容,有助于激发学生学习数学的兴趣.以为学生负责为出发点,我们要根据学校不同专业对于培养人才的需要与专业课教师一起讨论和制订数学课程的教学内容、目的和进度等的安排,从而形成有不同专业特色的数学教学体系.另外还可以根据不同专业,来分别设置公共模块和选学模块.

(二)编写一系列具有鲜明高职特色的教材,在教材中.融入生活工作有关的案例及数学建模思想和方法在教学中,教材是不可或缺的,起着引导教学方向的作用.高职培养的是技能型人才,而数学建模又是一项实践性的活动.高职院校数学教材的基础应该是生产实践,围绕着满足职业岗位需求的中心,把创新教育作为目的,把培养和提高学生综合素质作为教育观念,从而把进行数学建模的思想和方法表现出来.应该多把实践性,创新性的教学内容编入教材,尽可能地满足高职人才培养的需求.

(三)在数学教学中,使用鲜明有趣的案例有助于增强.学生对学习数学的兴趣和意识在进行数学教学过程中,对于每一个陌生的,学生未接触的公式、定理、抽象的概念等等,都尽量应用一些日常生活中存在的案例来举例以引导学生,在讲解每个知识点的时候,最好都能够使用知识点与实际生活和学生的专业紧密联系的实例,让学生能够充分地感受到数学渗透到了日常生活的每一个角落,无处不在,数学实际上就是一个通过数学符号来描述世界的模型,并不仅仅是对于理论的推导,枯燥而没有实际意义的工作.例如,微信红包、卫星发射轨迹、借贷偿还问题,以及经济学中分析的边际效用的这些例子.这些不仅能让学生学习到数学知识,而且能让他们体会到数学与日常生活的联系以及将数学知识与实际生活相结合的乐趣.数学建模有助于培养学生应用数学能力,值得在高职院校中大力推广.

(四)进行数学实验,培养学生的动手和动脑能力.数学建模的关键步骤之一就是通过使用计算机来求解模型,在数学建模过程中,数学实验是其重要组成部分之一.因为通过进行数学实验,可以使学生能够更加透彻的理解数学概念,学生学习数学时感觉更加简单,进而使学生在学习数学时更加积极.数学实验为学生提供了一种通过使用计算机进行相互学习的环境,学生能够根据自己大脑中大胆的设想,通过动手做实验来验证自己的想法.通过这样的教学方式,能够提高学生学习数学的积极性和主动性,另外,也可以培养提高学生的观察能力、归纳能力、思维能力以及动手能力,进而极大地提高了学生的综合素质.

(五)通过使用数学建模,在教学中培养学生运用数学的能力利用数学解决实际生产生活问题,利用数学来提高工作效率作为高职院校数学教育的根本任务,对于目前高职院校进行数学教学是关键的一环,能够运用数学,对于学生来说也是一种能力.因为它与数学的计算方式和思维方式以及空间想象力等都紧密相关.另外,数学建模也被引用到其他方面,使其应用范围非常广泛.

三、结束语

在高等数学的改革中,把数学建模的思维方式与方法加入其中,这是不可避免的,因为它顺应了时代的需求.我们应该抓住教育改革这一契机,对改革的深度与力度进行适当的加大,首先通过数学建模来提高高职的教学水平,从而提高高职院校学生的综合素质与综合能力,进而培养出拥有高等技能的优秀人才,为社会发展建设做出更大的贡献.

【参考文献】

[1]毛建生.高职数学与数学建模相结合的应用研讨[J].泸州职业技术学院学报,2011(3):17-21.

[2]李建杰.数学建模思想与高职数学教学[J].河北师范大学学报(教育科学版),2013(6):93-94.

第3篇:高职数学教学改革建模理念研究论文

高职数学教学改革建模理念研究论文

大量的应用型技能型人才,有效满足了社会各行各业的用工需求。随着国家对高职教育的重视和不断投入,提高教育的教学质量势在必行[1]。数学建模的核心是以数学模型为基础的实际运用,鉴于数学建模的这种特点,国内高职数学教育逐步把数学建模理念融入到课题教学中,提高学生的应用能力。以数学建模理念的告知书明确教学改革要求学生结合计算机技术,灵活运用数学的思想和方法独立地分析和解决问题,不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风[2]。笔者结合自身的教学工作经验,对基于数学建模理念的高职数学教学改革进行了探索,对教学实践中出现的问题进行了分析梳理,以期为高职数学教学改革提供新思路,推动高职数学教学水平的不断提高,培养出具有良好数学素养和专

未完,继续阅读 >

第4篇:数学课堂教学中数学建模思想的培养

数学课堂教学中数学建模思想的培养

数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。下面,我就结合课堂教学实际谈谈怎样培养学生的数学建模思想。

一、数学建模思想培养的意义:

1、能培养学生的创新意识和创造能力

2、训练学生快速获取信息和资料的能力

3、锻炼快速了解和掌握新知识的技能

4、培养团队合作意识和团队合作精神

5、增强口头表达能力和写作技能

现代的课堂学习

未完,继续阅读 >

第5篇:浅谈数学建模教育在高职院校中的应用论文

浅谈数学建模教育在高职院校中的应用论文

数学是一切科学与技术的基础,它的产生与发展都是为了推动社会的发展。因此,数学在社会生活中的地位是不可动摇的。然而,很多人都习惯把数学知识说成理论性的知识,觉得数学知识对社会的发展起不到促进作用,故从心底对数学产生了数学无用论的思想。20世纪70年代,数学建模进入了一些西方国家大学,它的出现带动了数学领域的发展,也驳斥了数学无用论的思想,使得数学理论很好地实践于生活当中的各个领域。20世纪80年代开始,随着改革开放,我国的数学建模教学和数学建模竞赛活动也日益蓬勃地发展起来。1982年复旦大学首先在应用数学专业学生中开设了数学模型课程,随后很多院校也相继开设。由于数学建模在各个高校中成功地引入,1994年教育部高教司决定每年在全国举行全国大学生数学数模竞赛。随

未完,继续阅读 >

第6篇:分析高职数学教学中渗透数学建模思想的必要性论文

分析高职数学教学中渗透数学建模思想的必要性论文

数学建模是联系数学理论和实际问题的桥梁和纽带,是数学学科与社会的交汇,是解决实际问题的一种方法。数学建模是从数学角度出发,对所需研究的问题作一个模拟,舍去无关因素,保留本质因素,把现实原型作抽象、简化后,使用数学符号、数学式子、数量关系简化而成某种数学结构。

当前高职数学课程教学中,由于课时少,教师多采用填鸭式的教学法,过分注重训练学生的逻辑思维能力、解题技巧,过分强调教学要求、教学进度的统一,缺乏层次性多样化,不能适应不同专业的要求,考试形式也几乎是清一色的笔试,而没有着意讨论和训练如何从实际问题中提炼出数学问题,以及如何用数学来解决实际问题,从而造成不少学生认为“学高等数学没用”,大大影响了学生学习数学的积极性和数学素养的提高,以及后继专业课程的

未完,继续阅读 >

第7篇:论高职数学教学中渗透数学建模思想的必要性论文

论高职数学教学中渗透数学建模思想的必要性论文

数学建模是联系数学理论和实际问题的桥梁和纽带,是数学学科与社会的交汇,是解决实际问题的一种方法。数学建模是从数学角度出发,对所需研究的问题作一个模拟,舍去无关因素,保留本质因素,把现实原型作抽象、简化后,使用数学符号、数学式子、数量关系简化而成某种数学结构。

当前高职数学课程教学中,由于课时少,教师多采用填鸭式的教学法,过分注重训练学生的逻辑思维能力、解题技巧,过分强调教学要求、教学进度的统一,缺乏层次性多样化,不能适应不同专业的要求,考试形式也几乎是清一色的笔试,而没有着意讨论和训练如何从实际问题中提炼出数学问题,以及如何用数学来解决实际问题,从而造成不少学生认为“学高等数学没用”,大大影响了学生学习数学的积极性和数学素养的提高,以及后继专业课程的学

未完,继续阅读 >

第8篇:高职数学建模分析的论文

高职数学建模分析的论文

【摘要】 高职院校中的数学难免存在一些复杂抽象化的现象,在教学和学习中存在难懂和混淆之处。数学建模能够用数学语言描述出实际现象,从而转变成易懂和简单化的问题。数学建模在高职院校数学中的应用,也逐渐受到了广大师生的重视,值得广大教育者进行探讨和研究。

【关键词】 高职院校;数学建模;学习

数学建模的应用,能够使学生更加直观了解和分析问题,还能开发学生的思维方式,用轻松愉快的心情去学习数学课程。可以让学生在互相交流沟通中培养自身的团队合作意识,可以让学生在学习中拓展自身的学习视野,养成良好的学习习惯,促进全面发展。

一、数学建模的含义以及重要性

数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,建立一个数学模型的全过程。当人们在研究和分析一个实际的问题时,需要对此进行深入调

未完,继续阅读 >

下载将数学建模思想渗透到高职院校数学课堂教学研究中论文word格式文档
下载将数学建模思想渗透到高职院校数学课堂教学研究中论文.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文