物理磁场对运动电荷的作用复习测试题

精品范文 时间:2022-11-06 08:18:48 收藏本文下载本文

第1篇:物理磁场对运动电荷的作用复习测试题

物理磁场对运动电荷的作用复习测试题

《磁场对运动电荷的作用》

一 、选择题

1.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O在匀强磁场中做逆时针方向的匀速圆周运动,磁场方向竖直向下,且范围足够大,其俯视图如图所示,若小球运动到某点时,绳子突然断开,则关于绳子断开后,对小球可能的运动情况的判断不正确的是

A.小球仍做逆时针方向的匀速圆周运动,但半径减小

B.小球仍做逆时针方向的匀速圆周运动,半径不变

C.小球做顺时针方向的匀速圆周运动,半径不变

D.小球做顺时针方向的匀速圆周运动,半径减小

【答案】A

【详解】绳子断开后,小球速度大小不变,电性不变.由于小球可能带正电也可能带负电,若带正电,绳断开后仍做逆时针方向的匀速圆周运动,向心力减小或不变(原绳拉力为零),则运动半径增大或不变.若带负电,绳子断开后小球做顺时针方向的匀速圆周运动,绳断前的向心力与带电小球受到的洛伦兹力的大小不确定,向心力变化趋势不确定,则运动半径可能增大,可能减小,也可能不变.

2.如图所示,一束电子流沿管的轴线进入螺线管,忽略重力,电子在管内的运动应该是( )

A.当从a端通入电流时,电子做匀加速直线运动

B.当从b端通入电流时,电子做匀加速直线运动

C.不管从哪端通入电流,电子都做匀速直线运动

D.不管从哪端通入电流,电子都做匀速圆周运动

【答案】选C.

【详解】无论从哪端通入电流,螺线管内的磁场方向总与电子流运动的方向平行,故电子流不受洛伦兹力的作用.

3.如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B、水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个( )

A.带电粒子的比荷

B.带电粒子在磁场中运动的周期

C.带电粒子的初速度

D.带电粒子在磁场中运动的半径

【答案】AB

【详解】设磁场的宽度为L,粒子射入磁场的速度v=Lt,L未知,故C选项错误;粒子运动的轨迹和圆心位置如图所示.

由几何关系知,粒子匀速圆周运动的半径r=233L,因不知L,也无法求出半径,故D选项错误;又因为r=mvqB,所以qm=vBr=32Bt,粒子运动的周期T=2πrv=433πt,选项A、B正确.

4. 带电粒子(重力不计)穿过饱和蒸汽时,在它走过的路径上饱和蒸汽便凝成小液滴,从而显示出粒子的径迹,这是云室的原理,如图是云室的拍摄照片,云室中加了垂直于照片向外的匀强磁场,图中oa、ob、oc、od是从o点发出的四种粒子的径迹,下列说法中正确的是( )

A.四种粒子都带正电

B.四种粒子都带负电

C.打到a、b点的粒子带正电

D.打到c、d点的粒子带正电

【答案】选D.

【详解】由左手定则知打到a、b点的粒子带负电,打到c、d点的粒子带正电,D正确.

5. 如图所示,下端封闭、上端开口、内壁光滑的细玻璃管竖直放置,管底有一带电的小球.整个装置水平匀速向右运动,垂直于磁场方向进入方向水平的匀强磁场,由于外力的作用,玻璃管在磁场中的速度保持不变,最终小球从上端口飞出,则从进入磁场到小球飞出端口前的过程中( )

A.小球带正电荷

B.小球做类平抛运动

C.洛伦兹力对小球做正功

D.管壁的弹力对小球做正功

【答案】ABD

6. 半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直于磁场方向射入磁场中,并从B点射出.∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为( )

A.2πr3v0 B.23πr3v0

C.πr3v0 D.3πr3v0

【答案】选D.

【详解】从弧AB所对圆心角θ=60°,知t=16T=πm3qB 高中语文,但题中已知条件不够,没有此项选择,另想办法找规律表示t.由匀速圆周运动t=AB/v0,从图中分析有R=3r,则:AB=Rθ=3r×π3=33πr,则t=AB/v0=3πr3v0.

7.电荷量为+q的粒子在匀强磁场中运动,下面说法中正确的是( )

A.只要速度大小相同,所受洛伦兹力就相同

B.如果把+q改为-q,且速度反向、大小不变,则洛伦兹力的大小、方向均不变

C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直

D.粒子只受到洛伦兹力作用时,运动的动能不变

【答案】选B、D.

【详解】因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度方向有关,如当粒子速度与磁场垂直时F=Bqv,当粒子速度与磁场平行时F=0.再者由于洛伦兹力的方向永远与粒子速度方向垂直,因此速度方向不同时,洛伦兹力的方向也不同,所以A选项错误.因为+q改为-q且速度反向时所形成的电流方向与原+q运动形成的电流方向相同,由左手定则可知洛伦兹力方向不变,再由F=Bqv知大小不变,所以B选项正确.因为电荷进入磁场时的速度方向可以与磁场成任意夹角,所以C选项错误.因为洛伦兹力总与速度垂直,所以洛伦兹力不做功,粒子动能不变,洛伦兹力只改变粒子的.运动方向,所以D选项正确.

8.A、B、C是三个完全相同的带正电小球,从同一高度开始自由下落,A球穿过一水平方向的匀强磁场;B 球下落过程中穿过水平方向的匀强电场;C球直接落地,如图所示.试比较三个小球下落过程中所需的时间tA、tB、tC的长短及三个小球到达地面的速率vA、vB、vC间的大小关系,下列说法正确的是( )

A.tA>tB=tC vB>vA=vC

B.tA=tB>tC vA<vB=vC

C.tA=tB=tC vA=vB>vC

D.tA>tB>tC vA=vB<vC

【答案】选A.

【详解】比较小球下落时间可由分析竖直方向受力情况与分析运动的情况去作比较;比较小球着地时的速率大小,可由动能定理进行分析,此时,要特别注意重力、电场力、洛伦兹力的做功特点. A球进入匀强磁场中除受重力外还受洛伦兹力,改变A的运动方向洛伦兹力方向随之改变,洛伦兹力方向斜向上,因此向上方向有分力阻碍小球自由下落,延长下落时间,而B与C球在竖直方向只受重力作用,竖直方向均做自由落体运动,故下落时间tA>tB=tC.三个带电球均受重力的作用,下落过程由于重力做正功,速度均增加.A球下落时虽受洛伦兹力作用,但洛伦兹力对电荷并不做功,只改变速度的方向,不改变速度的大小,故A、C两球的速度大小相等.而B球下落进入电场时,电场力对小球做正功,使小球B的动能增大,因此落地时B球的动能最大,即vB>vA=vC.

9.如图所示,平行板间的匀强电场范围内存在着与电场正交的匀强磁场,带电粒子以速度v0垂直电场从P点射入平行板间,恰好沿纸面做匀速直线运动,从Q飞出,忽略重力,下列说法正确的是( )

A.磁场方向垂直纸面向里

B.磁场方向与带电粒子的符号有关

C.带电粒子从Q沿QP进入,也能做匀速直线运动

D.若粒子带负电,以速度v1沿PQ射入,从Q′飞出时,则v1<v0

【答案】选A、D.

【详解】带电粒子以速度v0垂直电场从P点射入平行板间,恰好沿纸面做匀速直线运动,则带电粒子所受的电场力与洛伦兹力大小相等方向相反,根据左手定则判断不论粒子带何种电荷,磁场方向均垂直纸面向里,所以A正确,B错误;带电粒子从Q沿QP进入,电场力方向不变,而洛伦兹力反向,故不能做匀速直线运动,C错误;粒子带负电时,洛伦兹力方向向下,以速度v1沿PQ射入,从Q′飞出,则qv1B<qE=qv0B,所以v1<v0,D正确.

10. 回旋加速器是加速带电粒子的装置.其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )

A.减小磁场的磁感应强度

B.增大匀强电场间的加速电压

C.增大D形金属盒的半径

D.减小狭缝间的距离

【答案】选C.

【详解】回旋加速器时,带电粒子在匀强磁场中做匀速圆周运动,由qvB=mv2r,得v=qBrm;带电粒子射出时的动能Ek=12mv2=q2B2r22m.因此增大磁场的磁感应强度或者增大D形金属盒的半径,都能增大带电粒子射出时的动能.

二、非选择题

11.如图所示,真空中有以O′为圆心,r为半径的圆柱形匀强磁场区域,圆的最下端与x轴相切于坐标原点O,圆的右端与平行于y轴的虚线MN相切,磁感应强度为B,方向垂直纸面向外,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场.现从坐标原点O向纸面内不同方向发射速率相同的质子,质子在磁场中做匀速圆周运动的半径也为r,已知质子的电荷量为e,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力.求:

(1)质子进入磁场时的速度大小;

(2)沿y轴正方向射入磁场的质子到达x轴所需的时间.

【详解】(1)由洛伦兹力公式和牛顿第二定律,得:Bev=mv2r解得:v=Berm.

(2)若质子沿y轴正方向射入磁场,则以N为圆心转过14圆弧后从A点垂直电场方向进入电场,质子在磁场中有:

T=2πmBe,得:tB=14T=πm2eB

进入电场后质子做类平抛运动,y方向上的位移

y=r=12at2=12eEmt2E

解得:tE= 2mreE

则:t=tB+tE=πm2eB+ 2mreE.

12.如右图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r=233 m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外.两区域切点为C.今有质量m=3.2×10-26 kg.带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直磁场射入,它将穿越C点后再从右侧区穿出.求:

(1)该离子通过两磁场区域所用的时间.

(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)

【答案】(1)4.19×10-6 s (2)2 m

【详解】 (1)离子在磁场中做匀速圆周运动,在左右两区域的运动轨迹是对称的,如右图,设轨迹半径为R,圆周运动的周期为T.

由牛顿第二定律qvB=mv2R①

又:T=2πRv②

联立①②得:R=mvqB③

T=2πmqB④

将已知代入③得R=2 m⑤

由轨迹图知:tan θ=rR=33,则θ=30°

则全段轨迹运动时间:

t=2×T360°×2θ=T3⑥

联立④⑥并代入已知得:

t=2×3.14×3.2×10-263×1.6×10-19×0.1 s=4.19×10-6 s

(2)在图中过O2向AO1作垂线,联立轨迹对称关系侧移总距离d=2rsin 2θ=2 m.

第2篇:磁场对运动电荷的作用(教案)

磁场对运动电荷的作用力

鄱阳县第二中学:*** ★新课标要求

(一)知识与技能

1、知道什么是洛伦兹力,理解安培力和洛伦兹力的关系。

2、知道洛伦兹力产生条件,会用左手定则判定洛伦兹力的方向。

3、知道洛伦兹力大小的推理过程。

4、应用公式F=qvBsinθ解答有关问题。

5、应用洛伦兹力有关知识解释生产生活中有关的一些问题。

(二)过程与方法

通过洛伦兹力大小的推导过程进一步培养学生的分析推理能力。

(三)情感、态度与价值观

让学生认真体会科学研究最基本的思维方法:“对比—推理—假设—实验验证”

★教学重点

1、利用左手定则会判断洛伦兹力的方向。

2、掌握进入磁场方向的带电粒子,受到洛伦兹力大小的计算。

★教学难点

1、理解洛伦兹力对运动电荷不做功。

2、洛伦兹力方向的判断。

★教学方法

实验观察法、讲述法、分析推理法

★教学用具:

电子射线管、电源、磁铁、投影仪、投影片

★教学过程

(一)引入新课:同学们,我们首先来观看一下神奇而有美丽的极光。播放《美丽的极光》影片。

师:你们知道极光一般出现在什么地方吗? 生:两极等高纬度地区。

师:为什么极光不能在赤道等低纬度地区出现呢? 生:学生好奇。

师:我们通过这一节课的学习就将知道为什么极光这美丽而又神秘的面纱,这就是磁场对运动电荷的作用力(板书标题)

一、洛伦兹力(板书)

师:我们在上一节中学习了磁场对通电导线的作用力,即安培力的大小和方向。生:大小FqvBsin,方向:左手定则

师:磁场对通电的导线才有作用力,那么这个作用就与电流有关,那么电流是如何形成的呢?

生:电荷的定向移动形成的师:由上述的两个问题你可以想到什么?

生:磁场对通电导线的安培力可能是作用在大量运动电荷的作用力的宏观表现,也就是说磁场可能对运动电荷有力的作用。

师:很好。磁场对运动电荷究竟有没有作用力,我们口说无凭,能否通过实验来验证一下呢?

实验验证

师:要验证磁场对运动电荷是否有作用力,我们不仅需要一个磁场(展示蹄形磁铁),还需要运动电荷。那么运动电荷怎么得到呢?

展示:阴极射线管(结合视频材料)

介绍:阴极射线管的玻璃管内已经抽成真空,当左右两个电极按标签上的极性接上高压电源时,阴极会发射电子。在电场的加速下飞向阳极,电子束掠射到荧光板上,显示出电子束的轨迹。

演示:没有磁场时电子束是一条直线。用一个蹄性磁铁在电子束的路径上加磁场,尝试不同方向的磁场对电子束径迹的不同影响,直至出现电子束在磁场中偏转。

结论:磁场对运动电荷的确有作用力,我们把这一个作用力命名为洛伦兹力。(板书)运动电荷在磁场中受到的作用力叫做洛伦兹力,安培力是洛伦兹力的宏观表现。

二:洛仑兹力的方向(板书)

师:作为一种力,洛伦兹力是有方向的,那么,我们怎样来确定它的方向呢? 引导学生:既然安培力是洛伦兹力的宏观表现,那么洛伦兹力的方向是不是可以根据安培力的方向判断方法来判断呢?

生:可以,因为运动的电荷可看成等效电流。

师:很好,我们知道电流的方向是:规定正电荷移动的方向规定为电流的方向,那么正电荷所受力的方向就应该与电流的所受力的方向一样。那么我们怎么判断呢?

生:用左手定则判断

正电荷运动的方向与电流的方向相同,负电荷运动的方向与电流的方向相反。总结:(板书)

1.左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向正电荷运动的方向,这时拇指所指的方向就是运动的正电荷在磁场中所受洛伦兹力的方向。

2.负电荷受力的方向与正电荷受力的方向相反。深化

师:刚才,我们在判定洛伦兹的方向时,我们注意到电荷运动方向、磁场的方向、洛伦兹力的方向具有三维关系。为了帮助同学们更好地把握它们之间的关系,下面我们运用三维图再来分析一下洛伦兹力和电荷运动方向、磁场方向的关系。

师:甲图我们可以用左手定则判断,乙图中磁场方向与电荷运动方向不垂直时,怎么办? 生:分解速度„(结合动画)

师:通过这两幅三维图,你能总结一下F、B、V三者之间的方向关系? 生:F与B始终垂直、F与V始终垂直,而B与V不一定垂直。(板书)练习

师:试判断带电粒子刚进入磁场时所受到的洛伦兹力的方向。

三:洛仑兹力的大小(板书)1.问题

师:刚才我们研究了洛伦兹力的方向,那么洛伦兹力大小等于多少呢? 2.思路

师:我们能否根据已有的知识,从理论上进行推导呢? 生:根据安培力和洛伦兹力的关系。3.建模

师:这就需要我们建立一个模型。而模型的建立,我们总是选择简单的,所以: 磁场:匀强磁场

电流:通以恒定电流的直导线,并与磁场垂直

设有一段长为L,横截面积为S的直导线,单位体积内的自由电荷数为n,每个自由电荷的电荷量为q,自由电荷定向移动的速率为v。这段通电导线垂直磁场方向放入磁感应强度为B的匀强磁场中,求

(1)通电导线中的电流(2)通电导线所受的安培力(3)这段导线内的自由电荷数(4)每个电荷所受的洛伦兹力

选择具有代表性的同学,把他的推导过程用实物投影仪展示到大屏幕上,再请这位同学简叙推导过程。

最后总结:(板书)

QnqSv t通电导线所受的安培力F安BILBnqSvL 通电导线中的电流I这段导线内的自由电荷数NnSL 每个电荷所受的洛伦兹力FqvB

师:我们刚刚推导出的公式FqvB的适用条件是什么?

生:当电荷q以速度v垂直进入磁感应强度为B的磁场中,它所受的洛仑兹力FqvB 推广:

师:当运动电荷的方向与磁场的方向夹角为时,电荷所受的洛伦兹力怎么求? 生:分解速度…

结合动画分析,得出结论:FqvBsin 例题:某带电粒子的电量为q10场中,求它受到的洛伦兹力F多大?

四:洛伦兹力的特点:

1.洛伦兹力的方向既垂直于磁场,又垂直于速度,即垂直于v和B所组成的平面. 2.洛伦兹力对电荷不做功,只改变速度的方向,不改变速度的大小. 应用 1.电视机实验

介绍:电视机屏幕要显示出图象,必须要有电子打到荧光屏的各个地方上。那么,电子从哪里来呢?显象管的电子枪能产生大量的高速运动的电子──电子束。但是电子都沿同一个方向运动,有什么办法可以使电子打到荧光屏的各个地方呢?

生:加一水平的偏转磁场。

思考:该怎么加才能使电子打到荧光屏上的A点呢?若要打到B点呢?若要使电子打到荧光屏的位置从B点逐渐向A点移动呢?

生:向外、向内、向内减弱至向外增强。

师:这样,在电视机屏幕上就有光点从左边移动到右边,这在电视技术中叫做行扫描。但是,实际的电视应该电子束打到荧光屏的整个面,而不是一条线,我们该怎么办呢?

生:加一竖直的偏转磁场。

师:这在电视技术中叫做场扫描。如果场扫描和行扫描同时进行,想象一下,光点的运动情况会是怎么样的呢?

动画:扫描(场扫描:50场/秒,所以我们感到整个荧光屏都在发光)

14C,以速率v106m/s射入B102T的匀强磁

2.极光现象

问题:极光是来自太阳的高能粒子进入大气后,与大气发生作用而产生的。为什么在赤道却从来没有它的身影呢?

生:解释垂直射向赤道(向东偏转)和两极(长驱直入)的正电荷,并得出结论。师:至于有的时候高纬度地区也有极光出现,有兴趣的同学课后可以通过上网等方式查阅。地磁场使得在赤道等低纬度地区没有极光的身影,这的确是一种遗憾,但是,也正因为地磁场的存在,使我们人类的生产生活免遭宇宙高能粒子的伤害。

师:现在,我们明白了上课开始时那个美丽有神秘的极光现象吗?

板书设计:

磁场对运动电荷的作用 一 磁场对运动电荷的作用力

运动电荷在磁场中受到的作用力叫做洛伦兹力,安培力是洛伦兹力的宏观表现。二 洛伦兹力的方向──左手定则 三 洛仑兹力的大小

1、当运动电荷q以速度v垂直进入磁感应强度为B的磁场中,它所受的洛仑兹力FqvB2、当运动电荷的方向与磁场的方向夹角为时,我们可以分解速度,它所受的洛仑兹力FqvBsin

四 洛伦兹力的特点

1.洛伦兹力的方向既垂直于磁场,又垂直于速度,即垂直于v和B所组成的平面. 2.洛伦兹力对电荷不做功,只改变速度的方向,不改变速度的大小.

第3篇:磁场对运动电荷的作用教案

教学目标

知识目标

1、知道什么是洛仑兹力,知道电荷运动方向与磁场方向平行时,电荷受到的洛仑兹力等于零;电荷运动方向与磁场方向垂直时,电荷受到的洛仑兹力最大,2、会用左手定则熟练地判定洛仑兹力方向.

能力目标

由通电电流所受安培力推导出带电粒子受磁场作用的洛仑兹力的过程,培养学生的迁移能力. 情感目标

通过本节教学,培养学生科学研究的方法论思想:即“推理——假设——实验验证”.

教学建议 教材分析

本节的重点是洛伦滋力的大小和它的方向,在引导学生由安培力的概念得出洛伦滋力的概念后,让学生深入理解洛伦滋力,学习用左手定则判断洛伦滋力的方向,注意强调:磁场对运动电荷有作用力,磁场对静止电荷却没有作用力. 教法建议

在教学中需要注意教师与学生的互动性,教师先复习导入,通过实验验证洛仑兹力的存在,然后启发指导学生自己

未完,继续阅读 >

第4篇:《磁场对运动电荷的作用》教案1

《磁场对运动电荷的作用》教案

一、教学目标

1.通过实验掌握左手定则,并能熟练地用左手定则判断磁场对运动电荷的作用力——洛仑兹力的方向。

2.理解安培力是洛仑兹力的宏观表现。

3.根据磁场对电流的作用和电流强度的知识推导洛仑兹力的公式f=Bqv,并掌握该公式的适用条件。

二、重点、难点分析

1.重点是洛仑兹力方向的判断方法左手定则和洛仑兹力大小计算公式的推导和应用。2.因电荷有正、负两种,在用左手定则判断不同的电荷受到的洛仑兹力方向时,要强调四指所指方向应是正电荷的运动方向或负电荷运动的反方向。

三、教具

(学生电源或蓄电池)、阴极射线管,蹄形永久磁铁、导线若干。

四、主要教学过程

(一)引入新课

1.设问:我们已经掌握了磁场对电流存在力的作用、安培力的产生条件和计算方法,那么磁场对运动电荷是否也有力的作用呢?

2.

未完,继续阅读 >

第5篇:高中物理《磁场对运动电荷的作用》教学设计

高中物理《磁场对运动电荷的作用》教学设计

高中物理《磁场对运动电荷的作用》教学设计

一、黄金知识点:

1、洛伦兹力概念;

2、洛伦兹力的方向;

3、洛伦兹力的大小;

4、带电粒子的圆周运动;

5、轨道的半径和周期;

二、要点大揭密:

1、洛伦兹力的概念:运动电荷所受磁场的作用力。

注意:通电导线所受到的安培力实际上是作用在运动电荷的洛仑兹的宏观表现而已。

2、洛伦兹力的方向:用左手定则判定,注意四指指向正电荷运动方向(或负电荷运动的相

反方向),洛伦兹力的方向总是与电荷运动的方向垂直。

3、洛伦兹力的大小:当电荷运动的速度v方向与磁感应强度B的方向垂直时f = qvB,当B

与v平行时电荷不受洛伦兹力(f = 0 )。当电荷相对于磁场静止时,电荷不受洛伦兹力(f=0)。

4、洛伦兹力永远与速度v垂直,故洛伦兹力永远不做功。

未完,继续阅读 >

第6篇:5第五节:磁场对运动电荷的作用(推荐)

高二物理教案

西北师大附中 白景曦

第五节 磁场对运动电荷的作用

白景曦

(西北师范大学第一附属中学 甘肃 兰州 730070)

摘要

磁场对运动电荷的作用力叫洛伦兹力;洛伦兹力的大小:fqvBsin,洛伦兹力的方向由左手定则确定。

关键词:洛伦兹力

左手定则

特点

引言

磁场对电流有力的作用,什么是电流呢?电荷的定向移动就形成电流,于是我猜想:磁场对运动的电荷肯定有力的作用,磁场对电流的作用力其实就是磁场对每个电荷的作用力的合力。我的猜想是否正确呢?本节课我们就来研究磁场对运动电荷的作用。

第1课时:洛伦兹力的大小和方向

新课教学:

实验:磁场对运动电荷有力的作用 装置:电子管、蹄形磁铁

现象:不加磁场电子束沿直线运动;加磁场电子束发生偏转。

结论:磁场对运动电荷有力的作用

一、洛伦兹力

1.什么是洛伦兹力:磁场对运动电荷

未完,继续阅读 >

下载物理磁场对运动电荷的作用复习测试题word格式文档
下载物理磁场对运动电荷的作用复习测试题.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文