第1篇:高一数学第一章函数的基本性质教学计划
高一数学第一章函数的基本性质教学计划
教材分析
函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。
学情分析
学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。
教学建议
以图象作为切入点进行概念课教学,引导学生对概念的.形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。
教学目标
知识与技能
(1)能理解函数单调性、最值、奇偶性的图形特征
(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性
(3)单调性与奇偶性的综合题
(4)培养学生观察、归纳、推理的抽象思维能力
过程与方法
(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念
(2)渗透数形结合的数学思想进行习题课教学
情感、态度与价值观
(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳
(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达
课时安排
(1)概念课:单调性2课时,最值1课时,奇偶性1课时
(2)习题课:5课时
第2篇:高一上学期数学函数的基本性质教学计划
高一上学期数学函数的基本性质教学计划
进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。
教材分析
函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。
学情分析
学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。
教学建议
以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的`认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。
教学目标
知识与技能
(1)能理解函数单调性、最值、奇偶性的图形特征
(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性
(3)单调性与奇偶性的综合题
(4)培养学生观察、归纳、推理的抽象思维能力
过程与方法
(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念
(2)渗透数形结合的数学思想进行习题课教学
情感、态度与价值观
(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳
(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达
课时安排
(1)概念课:单调性2课时,最值1课时,奇偶性1课时
(2)习题课:5课时
希望上文提供的高一上学期数学函数的基本性质教学计划模板相关内容能够对大家有帮助,感谢大家的阅读。
第3篇:高一数学不等式的基本性质教学计划
高一数学不等式的基本性质教学计划
老师与同学一样,对于一个新学期或是一个课时都必须提前做好教学规划,下文为大家做出了沪教版高一数学不等式的基本性质教学计划,希望对大家有帮助。
本节课在教材中的地位和作用:《不等式的基本性质》,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。
一、教学目标:
(一)知识与技能
1.掌握不等式的三条基本性质。
2.运用不等式的基本性质对不等式进行变形
第4篇:湘教版数学高一函数的概念和性质教学计划
湘教版数学高一函数的概念和性质教学计划
一、高考要求
①了解映射的概念,理解函数的概念;
②了解函数的单调性和奇偶性的'概念,掌握判断一些简单函数单调性奇偶性的方法;
③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;
④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;
⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.
二、两点解读
重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题.
难点:①抽象函数性质的研究;②二次方程根的分布.
三、课前训练
1.函数的定义域
第5篇:九年级数学二次函数的性质教学计划
九年级数学二次函数的性质教学计划
一、教材版本: 北师大版数学八年级下册
二、教材分析:
一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。本节课的教学内容是一次函数的图象和性质,它是正比例函数图象与性质的推广,在许多方面与正比例函数的图象与性质有着紧密联系。在学习本节课之前,学生已经学习了变量与函数、平面直角坐标系以及一次函数的概念等有关的知识,对于函数图象的画法也有了一定的基础,本节课是继续学习反比例函数、二次函数的图象和性质的重要基础,也是今后学习高中代数、解析几何及其他数学分支的重要基础。在本节教学内容中,“数形结合”思想是所包含的主要数学思想。为此,在教学中,通过设置问
第6篇:函数基本性质典型习题课教案
函数基本性质典型习题课教案
教学目标:
1、掌握函数的基本性质;
2、能灵活运用函数单调性、奇偶性解部分中等难度题目 教学重点:能用函数单调性、奇偶性解部分中等难度题目 教学难点:灵活运用函数的单调性、奇偶性 教学方法:讲练结合 教学过程:
一、复习
1、增函数、减函数的定义,如何判断一个函数的单调性?步骤是什么?
2、如何求一个函数的最值?
3、奇函数、偶函数的定义,如何判断一个函数的奇偶性?步骤是什么?
4、奇函数、偶函数的性质分别是什么?
二、典例析评
例
1、设函数f(x)是R上的偶函数,在区间(-,0)上递增,且有f(8)-f(3a2-2a)0求a的取值范围。
解:f(8)-f(3a2-2a)0
f(8)f(3a2-2a)
又函数f(x)在R上的偶函数,在区间(-,0)上递增
2-83a-2a
第7篇:函数的基本性质测试二
函数的基本性质测试二
(本章测试共18题,满分100分,时间90分钟)日期姓名得分
一、填空题:(共十小题,每题4分,共40分)
11.函数y{2x4,x4的值域是____________________.1x6,x42
12.函数yf(x1)的定义域是[2,3],则yf(2x1)的定义域为____________________.13.函数f(x)x26|x|5的值恒小于0,则该函数的定义域为____________________.14.函数f(x)a|x|b(a,b为常数),且①f(2)0;②f(x)有两个单调递增区间,则同时满足上述条件的一个有x
序对(a,b)为___________.二、选择题:(共四小题,每题4分,共16分)
1.如果奇函数f(x)在区间[
第8篇:《函数的基本性质》知识总结
《函数的基本性质》知识总结
1.单调性
函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。
⑴函数单调性的定义
一般地,设函数yf(x)的定义域为A,区间IA.如果对于区间I
上是单调增函数,I称为内的______两个值x1,x2,当x1
x1,x2,当x1
单调性的等价定义:
M,当x1x2时,有f(x1)f(x2)0
f(x1)f(x2)y(x1x2)[f(x1)f(x2)]000; x1x2x
②f(x)在区间M上是减函数x1,x2M,当x1x2时,有f(x1)f(x2)0
f(x1)f(x2)y00; (x1x2)[f(x1)f(x2)]0x1x2x①f(x)在区间M上是