第1篇:三步应用题经典教案
三步应用题经典教案
三步应用题经典教案
教学目标
(一)使学生熟练掌握数量关系及解题思路,会解答简单的两、三步计算的应用题.
(二)提高学生分析、推理能力
教学重点和难点
让学生掌握数量关系、学会分析问题的方法,既是教学的重点,也是学习的难点.
教学过程设计
(一)复习准备
1.板演:
新镇小学三年级有4个班,每班40人;四年级有114人.三年级和四年级一共有多少人?
2.思路训练.
全班同学口答:
(1)根据条件补充问题,并说出数量关系.
有5个教室,每个教室有8盏灯,________?
王平同学每天早晨跑500米,跑了5天,________?
8个打字员共打字1600个,_______?
三年级有160人,四年级有114人,________?
(2)根据问题找条件,并说出数量关系.
平均每人采集树种多少千克?
火车速度是汽车速度的几倍?
香蕉比桔子少多少筐?
买足球共用多少元?
订正时说说解题思路,是怎样分析的.
(二)学习新课
1.新课引入.
复习题是两步计算的应用题,如果问题不变,改变其中的一个条件,使其成为三步计算的应用题,应该怎样表示?
学生可能会想到,四年级人数不直接给出,改为四年级比三年级少46人.这样改是合理的,但它已不是三步计算题了,因此只能改成:四年级有3个班,每班38人.
教师点明:这就是我们今天要学习的应用题.(板书课题:三步应用题)
2.出示例3.
新镇小学三年级有4个班,每班40人,四年级有3个班,每班38人.三年级和四年级一共有多少人?
(1)审题、理解题意.
学生读题后,说出已知条件和问题.
师生共同完成线段图:
(2)分析数量关系.
让学生结合线段图自己分析,并独立列式解答,然后集体交流,说出解题思路和过程.
生:从最后的问题入手分析,要求三、四年级共有多少人,必须知道三、四年级各有多少人.但题中这两个条件都没有直接告诉,因此第一步先算三年级有多少人? 40×4=160(人);第二步算四年级有多少人?38×3=114(人);第三步再把这两个年级人数合并起来,160+114=274(人).就是所要求的问题,即三、四年级的总人数.
随着学生的回答,教师板书:
①三年级有多少人?
40×4=160(人)
②四年级有多少人?
38×3=114(人)
③三年级和四年级一共有多少人?
160+114=274(人)
答:三年级和四年级一共有274人.
刚才的思考方法是从问题入手,找出所需要的条件,然后确定先算什么,再算什么,最后算什么.
大家再想一想,如果从题目的条件入手分析,那么题目中哪两个条件有密切关系?可以得到什么新的数量?
学生会说出:三年级有4个班,每班40人,可以求出三年级有40×4=160(人);四年级有3个班,每班38人,可以求出四年级有38×3=114(人);最后把两个年级人数合并起来,160+114=274(人)就是题中要求的问题.
3.反馈练习.
如果例3的已知条件不变,把问题改成三年级比四年级多多少人,应该怎样解答?
全班同学做在本上.
订正时说明是怎样想的.
小结:
我们解答应用题时,在认真审题理解题意的基础上,最重要的是分析数量关系,掌握分析方法,既要根据条件想问题,得到新的已知数量,也可以根据问题找条件,哪个条件是已知的,哪个条件是未知的,因此要先把未知的条件求出来.这两种分析方法是要经常用到的所以要切实掌握.
(三)巩固反馈
1.独立解答.
体育老师买了3个排球,每个40元;还买了2个篮球,每个62元.一共用了多少元?(先用线段图表示出已知条件和问题,再列式解答)
解答后,由学生说说解题思路,并订正.
2.比较题.
(1)菜场运来黄瓜8筐,每筐25千克,茄子12筐,每筐20千克,运来的黄瓜和茄子共有多少千克?
(2)如果改变其中一个条件,茄子12筐,改为8筐,其余条件和问题不变,应该怎样解答?
学生会出现两种解法:
25×8+20×8(25+20)×8
=200+160=45×8
=360(千克)=360(千克)
请同学们比较一下这两种解法的`解题思路是什么?哪种解法比较简便?
通过讨论明确,有些应用题,由于解题思路不同,解题方法就不同,而且计算的步数也不一样.有的三步计算题可以用两步计算,这样使得计算比较简便.
同学们再想一想,(1)题能否用两步计算?为什么?从而明确由于两种蔬菜的筐数不一样,也就是当求两个积的和(或差)时,没有相同的因数,就不能用简便方法计算.
3.粮店运来25包大米,共重2500千克,运来40袋面粉,共重2000千克,一包大米比一袋面粉重多少千克?
(四)全课总结
我们今天学习的复合应用题,都是由几个简单的一步应用题组合而成的.
解答时,首先要理解题意,在此基础上分析数量关系是关键,无论采用哪种分析方法,都要找出条件与问题之间的关系,计算时要养成认真、细心的习惯.
(五)作业
练习四第1~3题.
课堂教学设计说明
学生从现在开始学习三步计算应用题,由于数量关系比较简单,理解并不困难,重要的是使学生学会根据不同的条件和问题,学会分析问题的方法,掌握解题思路和步骤.因此本节课重点是思路教学.
教学过程分为三个层次.
第一个层次,从复习旧知识入手,通过补条件、补问题进行两种思路的训练,从解答两步应用题入手,为掌握思考方法作准备.
第二个层次,首先从改变复习题中直接条件为间接条件,使其成为三步计算应用题新课,让学生看到两、三步应用题之间的联系,再通过画图,独立试算、讨论等方式,达到掌握解题思路,学会不同的分析方法.
第三个层次,练习的设计由易到难,在掌握基本题的基础上,又提出变式题,并通过比较找出简便算法,以提高学生灵活解答应用题的能力.
板书设计
三步应用题(一)
例3 镇小学三年级有4个班,每班40人,四年级有3个班,每班38人.三年级和四年级一共有多少人?
(1)三年级有多少人?
40×4=160(人)
(2)四年级有多少人?
38×3=114(人)
(3)三、四年级共有多少人?
160+114=274(人)
答:三、四年级共有274人.
菜场运来黄瓜8筐,每筐25千克,茄子8筐,每筐20千克,运来的黄瓜和茄子共多少千克?
解法(一)(1)运来黄瓜多少千克?
25×8=200(千克)
(2)运来茄子多少千克?
20×8=160(千克)
(3)共运来黄瓜、茄子多少千克?
200+160=360(千克)
解法(二)(1)每筐黄瓜和茄子共重多少千克?
25+20=45(千克) (2)运来黄瓜和茄子共重多少千克?
45×8=360(千克)
答:运来黄瓜和茄子共重360千克.
第2篇:三步应用题的教案
三步应用题的教案
三步应用题的教案
三步就用题
目的:
1使学生理解掌握较容易的三步应用题的解题思路,能正确解答,三步应用题。
2使学生依据题意分析数量关系。
3能培养学生的分析解答应用题的能力和表达能力。
难点重点:
分析题里的数量关系,能快速地解答此类应用题。
教学准备L:
应用题的课件小黑板
教学方法:
引导法图示法讨论法情景教育法
教学过程:
一情景导入:
出示课件(由电脑出示情景,以情景教学引入知识吸引学生的兴趣激怒学生的热情)
岳城小学三年组级有三个班,每班60人,四年级有二个班,每班77人。你能根据我们学校的信息来编应用题吗?
学生交流所编的应用题。
二探究新知
1利用学生编的应用题进行教学
2出示例题(即学生编的其中的一种)
例:
岳城小学三年级有3个班,每班60人。四年级有2个班,每班77人,三年级和四年级一共有多少个学生?
A读题找出已条件和总题。
B自制线段图理解题意。
C请学生上台画线段图。
D看图分析讨论“要求三四年级一共有多少人?”就是要先求什么?再求什么最后求什么?
评价: 出示课件中的线段图,对比学生所制的线段图你沉得他画得怎样?
E 学生汇报,教师板书:
(1)三年级有多少人?
60 * 3=180(人)
(·2)四年级有多少人?
77*2=154(人)
(3)三,四年级一共有多少人?
180+154=334(人)
答三四年级一共有334人,小学数学教案《三步应用题》。
3你能改变问题把它变成另一道应用题吗?
根据学生的回答出示课件。(直接在原题上改变问题既让学生对比上一题,又能同时展示两题的不同这处使它们的相同处和不同处显而易见培养学生的'观察力和思维能力)
岳城小学三年级有3个班,每班有60人。四年级有2个班,每班有77人,三年级比四年级多多少人?
(1)找条件和问题并画出线段图分析
(2)与上一题相比你发现了什么?讨论怎样解答这道应用题?
(3)学生合作解答应用题
(4)请小老师上台讲解思路。
三观察我们今天滨应用题,你能给今天的内容取个名字吗?
训练学生的观察能力和总结能力
在黑板上板书学生取的名字,并问学生你这么给他取名字的原因是什么?
师生一同讲解此类型应用题的解题思路。
四巩固练习
1出示课件中的信息。
3个排球,每个62元 乒乓球和篮球一共多少钱?
5个篮球,每个40元 篮球和乒乓球一共多少钱?
9个足球,每个53元 排球和足球一共多少钱?
篮球和足球一共多少钱?
2选择信息填空:
(1)学校买了3个铅球,每个18元------------铅球比西瓜多多少钱?
同桌相互说说,你认为应该先算什么?再算什么?最后算什么?各用什么方法?
汇报解答过程
板书:
三步应用题
例3
(1)三年级有多少人?
60*3=180(人)
(2)四年级有多少人?
77*2=154(人)
(3)三四年级共有多少人?
180+154=334(人)
答三四年级一共有334人。
三步应用题
第3篇:三步计算应用题教案参考
三步计算应用题教案参考
三步计算应用题教案参考
教学内容: 九年义务教育六年制小学数学第八册第59页例1,三步计算应用题(八册)。
教学目的:
1.掌握解答应用题的一般步骤,能凭借线段图分析数量关系,弄清三步计算应用题的知识结构,并能列综合算式进行解答。
2.培养学生初步的搜集信息、选择信息、利用信息的能力。
教学重点: 理解掌握三步计算应用题的数量关系。
教学特点: 应用题检验的方法。
教具准备: 计算题辅助教学软件一套。
教学过程:
一、引入
1.生猜老师的年龄。
2.生提供信息:如果老师不直接告诉年龄,你能提供几条信息,使同学们从你所提供的信息中推算出老师的年龄吗?引导学生从多种角度展开,让学生灵活选择条件进行解答。
[说明:课的导入贴近学生的生活实际,使学生能感受到数学知识的实用价值,易于激发学生的学习兴趣。]
二、展开
第4篇:《三步应用题混合练习》教案
《三步应用题混合练习》教案
练习要求:
掌握列方程解三步应用题的方法;体会到列方程解题的优越性。培养学生灵活选择解题方法的能力。
练习重点:
提高学生列方程解应用题的能力。
练习过程:
一、基本练习
1.列方程解答下列各题。
(1)45的3倍与x的3倍的和等于240。
(2)什么数的2倍比20多4?
2.买3支铅笔和4本练习本,一共用去2.76元。已知每支价钱是0.12元,每本练习本的'价钱是多少元?
3.用一根长72厘米的铁丝围成一个长方形。长方形的宽是16厘米,长是多少厘米?
二、指导练习
1.练习二十八第12题。
做题前,先让学生做这道题:甲乙两艘轮船同时从一个码头向相反方向开出,甲船每小时行19.5千米,乙船每小时行25.5千米。航行了5小时,两船相距多少千米?
做完后,再做第12题。
方法一:19.5×5+5x=2
第5篇:三步计算的应用题教案
三步计算的应用题教案
三步计算的应用题教案
教学目标
1.理解三步计算的应用题的数量关系,掌握解题思路.
2.能分步解答较容易的三步计算应用题.
3.继续培养学生类推、分析、比较能力.
教学重点
理解应用题的数量关系.
教学难点
确定应用题的解题步骤.
教学步骤
一、铺垫孕伏.
1.口算.
56×2+56= 78×4-22= 45÷(3+2×6)=
168-17×4= 100-100÷5×3= (100-100÷5)×3=
2.华山小学三年级栽树56棵,四年级栽的棵数是三年级的2倍.三年级和四年级一共栽树多少棵?
提示:要想求出“三、四年级一共栽树多少棵”,必须知道哪两个条件?四年级栽树棵数怎样求?为什么用“56×2”,你们是根据哪句话这样求的?
二、探究新知.
1.改复习题为例5:华山小学三年级栽树56棵,四年级栽的棵数是三年
第6篇:三步计算应用题教案分析
三步计算应用题教案分析
三步计算应用题教案分析
教学目标:
1、 使学生进一步掌握三步计算应用题的结构,会列综合式解答。
2、 会从不同角度分析三步计算应用题的数量关系,提高学生分析问题、解决问题的能力。
教学重点: 掌握三步计算应用题的分析方法
教学难点: 理解例3的简便解法
教前思考: 通过前面两课时三步计算应用题的教学,学生已经初步掌握了三步计算应用题的解题思路。教学例3时,可以引导学生从不同角度分析题中的数量关系,让学生讨论后汇报解题思路,不论从条件出发分析还是从问题出发分析都应该给予肯定。例3简便解法是:25÷1.25=20(天)。这是因为工作总量相同,工作效率是:实际每天生产的件数是原计划的.1.25倍,那么工作效率越高,工作时间就越短,所以工作时间与工作效率正好相反,也就是工作效率和工作时间成反比,
第7篇:三步计算应用题
“三步计算应用题
(三)”教学设计
徐光能
教学内容:课本应用题例2及练一练
教学目标:
通过学习进一步促进学生分析问题的能力,掌握用各种方法来解决问题。提高学生的应用能力。
教学重点:掌握一般复合应用题的分析方法
教学用具:幻灯,小黑板
教学过程:
一、只列式不计算
⑴某毛纺厂有男职工25人,女职工的人数是男职工的4倍。
A.女职工有多少 人?
B.男女职工共有多少人?
C.女职工比男职工多几人?
(B、C两问要让学生思考用多种方法。让学生说说分析的思路)
⑵养鸡场有公鸡120只,母鸡的只数比公鸡的5倍多32只,A.有母鸡多少只?
B.公鸡、母鸡共有多少只?
(让学生试试用线段图来表示题意)
二、创设问题情景
每年的“六一”节前怡园小学生都要向山区同学捐书,今年大队部对三、四、五年级捐书情况统计如下:
三年级说:“我班捐书36本。
第8篇:三步应用题的练习课教案
三步应用题的练习课教案
三步应用题的练习课教案
教学内容: 课本第21页练习五的第9-13题,三步应用题的练习课(二)。
教学目的: 通过练习使学生进一步理解简单的三步应用题的数量关系,掌握解题的方法;培养学生的分析、推理和灵活解答应用题的能力。
教学过程:
一、口算练习。
教师用口算卡片出示口算题,指名让学生计算。
9300÷300= 650-350= 5400÷600=
12×500= 4800÷800= 370-190=
240+260= 700×30= 80×5×2=
二、混合运算练习,小学数学教案《三步应用题的练习课(二)》。
教师用小黑板出示题目,让学生做在练习本上,集体订正时,指名让学生先说一说运算顺序,再说得数。
(44+36×5)÷32 400÷(632-27×16)
33×(60-168÷3) (54