第1篇:九年级数学上册二次函数测试题
九年级数学上册二次函数测试题
一、填空题(每空3分,共42分)
1.已知函数y=(k2-k)x2+kx+1,当k满足 时,y是以x为自变量的一次函数;当k满足 时,y是以x为自变量的二次函数。
2.已知函数y=ax2的图象经过点P(3,-9),则此函数的解析式是 ;它的开口方向是 ,它有最 值。当x>0时,y随x的增大而 。
3.抛物线y=3-2x-x2的开口 ,顶点坐标是 ,对称轴是 ,它与x轴的交点坐标是 ,它与y轴的交点坐标是 。
4.二次函数y=mx2-3x+2m-m2的图象经过原点,则m 。
5.把函数y=3x2的图象向左平移2个单位,得到函数y= 的图象;再向下平移4个单位得到函数y= 的图象。
二、选择题(每小题4分,共28分)
6.抛物线y=-x2-2x+3的顶点坐标是( )
A.(1,4) B.(1,-4) C.(-1,4) D.(-1,-4)
7.如果二次函数y=x2-10x+c的顶点在x轴上,那么c的值为( )
A.0 B.10 C.25 D.-25
8.1月份的产量为a,月平均增长率为x,第一季度产量y与x的函数关系是( )
A.y=a(1+x)2 B.y=a(1+x)+a(1+x)2 C.a+(1+x)2 D.y=a(2+x)+a(1+x)2
9.二次函数y=-2(x+1)2+2的大致图象是( )
A B C D
10.已知函数 ,当函数值随x的增大而减小时,则x 的取值范围是( )
A.x<1 b=“” x=“”>1 C.x>-2 D.-2
11.a≠0,则在同一平面直角坐标系内,一次函数y=a(x-1)和二次函数y=a(x2-1)的图象只可能是图中的( )
A B C D
12.二次函数y=x2+ax+b中。若a+b=0 ,则它的图象必经过点( )
A.(-1,1) B.(1,-1) C.(1,1) D.(-1,-1)
三、解答题(每小题15分,共30分)
13.已知二次函数
(1) 把已知函数化成 的形式;
(2) 指出图象的对称轴和顶点坐标;
(3) 画出函数的'图象.
14.已知雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.6m,B种布料0.4m,可获利润50元;若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1) 求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;
(2) 雅美服装厂在生产这批时装中,当N型号的时装为多少套时,所获得的利润最大?最大利润是多少?
第2篇:初三数学上册期中二次函数测试题
初三数学上册期中二次函数测试题
1.已知 函数y= x2-x-12,当函数 y随x的增大而减小 时,x的取 值范围是()
A. x<1 B. x>1C. x>- 4 D . -4<x<6
2.某商店购进一批单价为20元的日用商品,如果 以 单价30元销售,那么半月内可售出400件,根据销售经验, 提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件, 如果提高售价,才 能在半月内获得最大利润?
3. 某地要建造一个圆 形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相 同的抛物线路 径落下,且在过OA的任一平面上,抛物线形状如图
(1)所示.
(2)建立直角坐标系,水流喷出的高度y( 米)与水平距离x(米)之间的'关系是 .请回答下列问题:
(1) 柱子OA的高度是多少米?
(2) 喷出的水流距水平面 的最大高度是多少 米 ?
(3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?
4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用 “撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v 2来表示,其中v(千米/分)表示汽车的速度.
① 列表表示I与v的关系;
② 当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍 ?
5. 如图,正 方形EFGH的顶点在边长为a的正方形ABCD的边 上,若AE=x, 正方形EFGH的面积为y.
(1) 求出y与x之间的函数关系式;
(2) 正方形EFGH有没有最大面积?若有 ,试确定 E 点位置;若没有 ,说明理由.
人教版2015初三数学上册期中二次函数测试题(含答案解析)参考答案:
1、 A2、售价为35元时,在半月内可获得最大利润3、(1)(2)
(3)4、①略 ②4倍5、(1)y= 2x 2-2ax+a2(2) 有.当点E是AB的中点时,面积最大.
第3篇:初中数学二次函数测试题
初中数学二次函数测试题
一、填空题(每空3分,共42分)
1.已知函数y=(k2-k)x2+kx+1,当k满足 时,y是以x为自变量的一次函数;当k满足 时,y是以x为自变量的二次函数。
2.已知函数y=ax2的图象经过点P(3,-9),则此函数的解析式是它的开口方向是 ,它有最 值。当x0时,y随x的增大而 。
3.抛物线y=3-2x-x2的开口 ,顶点坐标是 ,对称轴是 ,它与x轴的`交点坐标是 ,它与y轴的交点坐标是 。
4.二次函数y=mx2-3x+2m-m2的图象经过原点,则m 。
5.把函数y=3x2的图象向左平移2个单位,得到函数y= 的图象;再向下平移4个单位得到函数y= 的图象。
二、选择题(每小题4分,共28分)
6.抛物线y=-x2-2x+3的顶点坐标是( )
A.(1,4) B.(1,-
第4篇:九年级二次函数综合测试题及答案
二次函数单元测评
一、选择题(每题3分,共30分)
1.下列关系式中,属于二次函数的是(x为自变量)()A.B.C.D.2.函数y=x2-2x+3的图象的顶点坐标是()
A.(1,-4)
B.(-1,2)
C.(1,2)
D.(0,3)3.抛物线y=2(x-3)2的顶点在()
A.第一象限
B.第二象限
C.x轴上
D.y轴上 4.抛物线的对称轴是()
A.x=-
2B.x=2
C.x=-
4D.x=4 5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是(A.ab>0,c>0 B.ab>0,c0D.ab
在第___象限()
A.一B.二C.三D.四
7.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()
A.4+m
第5篇:九年级上册二次函数教学设计
二次函数y=ax 的图像与性质教学设计
一、教材分析:
本节是学生学习了二次函数的概念之后,对其图象及性质逐步进行探究的一个内容,在此之前学生已经对正比例函数、一次函数和反比例函数的概念及图象与性质进行了学习,因此在本节课的学习方法上学生已经有了一定的经验。但二次函数,它是进一步学习函数知识,体现函数知识螺旋发展的一个重要环节。同时在此节后,我们还将循序渐进,在此基础上由简到繁逐步展开二次函数的研究。二次函数的图像是抛物线,是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。可以说这节课既是承上启下,同时本节课的学习也能让学生体会到数学的实用及美感。其地位及作用不可小看。
2二、设计思想
1.函数及其图象在初中数学中占有很重要的位置。如何突破这个既重要又抽
第6篇:二次函数测试题的
二次函数测试题的(锦集10篇)由网友 “猫小姐2” 投稿提供,下面小编为大家整理过的二次函数测试题的,欢迎阅读与借鉴!
篇1:二次函数测试题的
二次函数测试题的整理
一、填空题:
1、函数是抛物线,则=。
2、抛物线与轴交点为,与轴交点为。
3、二次函数的图象过点(-1,2),则它的解析式是,当时,随的增大而增大。
4、二次函数的图象如下左图所示,则对称轴是,当函数值时,对应的取值范围是。
y
xA
-3o1
B
5、已知二次函数与一次函数的'图象相交于点A(-2,4)和B(8,2),如上右图所示,则能使成立的的取值范围是。
二、选择题:
6、函数的图象经过点
A、(-1,1)B、(1,1)C、(0,1)D、(1,0)
7、抛物线向右平移1个单位,再向下平移2个单位,所得到的抛物线是
A、B、
C、D、
8、已知关于的函数关系式(为