高中数学知识点总结_第六章不等式[1]_数学不等式知识点总结

学校工作总结 时间:2020-02-27 16:09:58 收藏本文下载本文
【www.daodoc.com - 学校工作总结】

高中数学知识点总结_第六章不等式[1]由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数学不等式知识点总结”。

高中数学第六章-不等式

考试内容:

不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求:

(1)理解不等式的性质及其证明.

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.

(3)掌握分析法、综合法、比较法证明简单的不等式.

(4)掌握简单不等式的解法.

(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│

§06.不 等 式知识要点

1.不等式的基本概念

(1)不等(等)号的定义:ab0ab;ab0ab;ab0ab.(2)不等式的分类:绝对不等式;条件不等式;矛盾不等式.(3)同向不等式与异向不等式.(4)同解不等式与不等式的同解变形.2.不等式的基本性质

(1)abba(对称性)

(2)ab,bcac(传递性)

(3)abacbc(加法单调性)

(4)ab,cdacbd(同向不等式相加)

(5)ab,cdacbd(异向不等式相减)

(6)a.b,c0acbc

(7)ab,c0acbc(乘法单调性)

(8)ab0,cd0acbd(同向不等式相乘)

(9)ab0,0cdabcd(异向不等式相除)

(10)ab,ab011(倒数关系)ab

(11)ab0anbn(nZ,且n1)(平方法则)

(12)ab0a(nZ,且n1)(开方法则)

3.几个重要不等式

(1)若aR,则|a|0,a20

(2)若a、bR,则a2b22ab(或a2b22|ab|2ab)(当仅当a=b时取等号)

(3)如果a,b都是正数,那么

ab.(当仅当a=b时取等号)

2极值定理:若x,yR,xyS,xyP,则:

1如果P是定值, 那么当x=y时,S的值最小;○

2如果S是定值, 那么当x=y时,P的值最大.○

利用极值定理求最值的必要条件: 一正、二定、三相等

.(4)若a、b、cR,则abca=b=c时取等号)

3ba(5)若ab0,则2(当仅当a=b时取等号)

ab

(6)a0时,|x|ax2a2xa或xa;|x|ax2a2axa

(7)若a、bR,则||a||b|||ab||a||b|

4.几个著名不等式

(1)平均不等式:如果a,b都是正数,那么

11abab(当仅当2a=b时

取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数): 2222abababab22特别地,ab((当a = b时,())ab)222

2a2b2c2abc(a,b,cR,abc时取等)33

22...an幂平均不等式:a12a221(a1a2...an)2 n

注:例如:(acbd)2(a2b2)(c2d2).1111111常用不等式的放缩法:①2(n2)

nn1n(n1)nn(n1)n1n

n1)

(2)柯西不等式: 若a1,a2,a3,,anR,b1,b2,b3,bnR;则

(a1b1a2b2a3b3anbn)aaaa123n时取等号b1b2b3bn22(a12a22a32an)(b122b22b32bn)

(3)琴生不等式(特例)与凸函数、凹函数

若定义在某区间上的函数f(x),对于定义域中任意两点x1,x2(x1x2),有 f(x1x2f(x1)f(x2))或22f(x1x2f(x1)f(x2)).2

2则称f(x)为凸(或凹)函数.5.不等式证明的几种常用方法

比较法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法

(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解.特例① 一元一次不等式ax>b解的讨论;

2②一元二次不等式ax+bx+c>0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则

f(x)0f(x)g(x)0;g(x)f(x)g(x)0 f(x)0g(x)g(x)0

(3)无理不等式:转化为有理不等式求解

1g(x)0定义域 f(x)g(x)f(x)0

○2f(x)0f(x)0○3f(x)g(x)g(x)0或g(x)02f(x)[g(x)]f(x)0 f(x)g(x)g(x)02f(x)[g(x)]

(4).指数不等式:转化为代数不等式

af(x)ag(x)(a1)f(x)g(x);af(x)ag(x)(0a1)f(x)g(x)af(x)b(a0,b0)f(x)lgalgb

(5)对数不等式:转化为代数不等式

f(x)0logaf(x)logag(x)(a1)g(x)0;

f(x)g(x)f(x)0 logaf(x)logag(x)(0a1)g(x)0f(x)g(x)

(6)含绝对值不等式

1应用分类讨论思想去绝对值;○2应用数形思想; ○

3应用化归思想等价转化 ○

g(x)0|f(x)|g(x)g(x)f(x)g(x) g(x)0|f(x)|g(x)g(x)0(f(x),g(x)不同时为0)或f(x)g(x)或f(x)g(x)

注:常用不等式的解法举例(x为正数):

①x(1x)21124

2x(1x)(1x)()322327

22x2(1x2)(1x2)1234②yx(1x)y()y223272

类似于ysinxcosxsinx(1sinx),③|x1||x||1|(x与1同号,故取等)2 22

xxx

高中数学不等式知识点总结

一般地,用纯粹的大于号“>”、小于号“y,那么yy,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x......

高中数学不等式知识点总结

刀豆文库小编为你整合推荐8篇高中数学不等式知识点总结,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

不等式知识点总结

不等式知识点总结上学的时候,相信大家一定都接触过知识点吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。你知道哪些知识点是真正对我们有帮助的吗?以下是......

不等式知识点总结

刀豆文库小编为你整合推荐4篇不等式知识点总结,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

不等式知识点总结

感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,下面是小编帮大家整理的不等式知识点总结,希望大家喜欢。不等式:①用符号〉,=,〈号连接的式子叫不等式。②不......

下载高中数学知识点总结_第六章不等式[1]word格式文档
下载高中数学知识点总结_第六章不等式[1].doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文