数形结合教学心得体会(精选6篇)_中学数学教学心得体会

教学心得体会 时间:2021-11-13 07:14:18 收藏本文下载本文
【www.daodoc.com - 教学心得体会】

数形结合教学心得体会(精选6篇)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“中学数学教学心得体会”。

第1篇:数形结合

如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()

(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;

(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.

某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点进行机组试运行,且该水池的蓄水量与时间(时间单位:小时)的关系如图丙所示:

给出以下三个判断:①0点到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水不出水,④单位时间内每个进水口进水量是每个出水口出水量的两倍.则上述判断中一定正确的是

如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4√2,∠C=45°,点P是BC边上一动点,设PB的长为x.

(1)当x的值为 时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为

时,以点P、A、D、E为顶点的四边形为平行四边形;

(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.

第2篇:学习心得数形结合

数形结合学习心得

低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的道理。通过多媒体教学,既充分展现数与形之间的内在关系,又激发了学生的好奇心和求知欲,为培养学生数形结合的兴趣提供了可靠的保证。

又例如:在教学有余数的除法时,我是利用7根小棒来完成的教学的。首先出示7根小棒,问能拼成几个三角形?要求学生用除法算式表示拼三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。

再如:教学连除应用题时,课一始,呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。

30÷2÷3,学生画了右图:平均分成2份,再将获得一份平均分成3份。

30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。

30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。

在教学中我要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。在教学实践中,这样的例子多不胜数。数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。

第3篇:数形结合教学片断

一、在理解算理过程中渗透数形结合思想。

小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。”根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。

(一)“分数乘分数”教学片段

课始创设情境:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面),提出问题:装修工人每小时粉刷这面墙的1/5,1/4小时可以这面墙的几分之几?

在引出算式1/5×1/4后,教师采用三步走的策略:第一,学生独立思考后用图来表示出1/5×1/4这个算式。第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领后进生。后进生受到启发后修改自己的图形,更好地理解1/5×1/4这个算式所表示的意义。第三,全班点评,请一些画得好的同学去展示、交流。也请一些画得不对的同学谈谈自己的问题以及注意事项。

这样让学生亲身经历、体验“数形结合”的过程,学生就会看到算式就联想到图形,看到图形能联想到算式,更加有效地理解分数乘分数的算理。如果教师的教学流于形式,学生的脑中就不会真正地建立起“数和形”的联系。

(二)“有余数除法”教学片段

课始创设情境:9根小棒,能搭出几个正方形?要求学生用除法算式表示搭正方形的过程。

生:9÷4

师:结合图我们能说出这题除法算式的商吗? 生:2,可是两个搭完以后还有1根小棒多出来。师反馈板书:9÷4=2……1,讲解算理。

师:看着这个算式,教师指一个数,你能否在小棒图中找到相对应的小棒? ……

通过搭建正方形,大家的脑像图就基本上形成了,这时教师作了引导,及时抽象出有余数的除法的横式、竖式,沟通了图、横式和竖式各部分之间的联系。这样,学生有了表象能力的支撑,有了真正地体验,直观、明了地理解了原本抽象的算理,初步建立了有余数除法的竖式计算模型。学生学得很轻松,理解得也比较透彻。

二、在教学新知中渗透数形结合思想。

在教学新知时,不少教师都会发现很多学生对题意理解不透彻、不全面,尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手”。基于此,把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。

(一)“植树问题”教学片段

模拟植树,得出线上植树的三种情况。

师:“ ”代表一段路,用“/”代表一棵树,画“/”就表示种了一棵树。请在这段路上种上四棵树,想想、做做,你能有几种种法?

学生操作,独立完成后,在小组里交流说说你是怎么种的?

师反馈,实物投影学生摆的情况。师根据学生的反馈相应地把三种情况都贴于黑板:

①_________两端都种

②____________或____________一端栽种 ③_______________两端都不种

师生共同小结得出:两端都种:棵数=段数+1;一端栽种:棵数=段数;两端都不种:棵数=段数—1。

以上片段教师利用线段图帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础融合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

(二)连除应用题教学片段

课一开始,教师呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。

30÷2÷3,学生画了右图:先平均分成2份,再将获得一份平均分成3份。30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。以上片段,教师要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。

三、在数学练习题中挖掘数形结合思想。运用数形结合是帮助学生分析数量关系,正确解答应用题的有效途径。它不仅有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识。

(一)三角形面积计算练习

人民医院包扎用的三角巾是底和高各为9分米的等腰三角形。现在有一块长72分米,宽18分米的白布,最多可以做这样的三角巾多少块?

有些学生列出了算式:72×18÷(9×9÷2),但有些学生根据题意画出了示意图,列出72÷9×(18÷9)×2、72×18÷(9×9)×2和72÷9×2×(18÷9)等几种算式。

在上面这个片段中,数形结合很好地促进学生联系实际,灵活解决数学问题,而且还有效地防止了学生的生搬硬套,打开了学生的解题思路,由不会解答到用多种方法解答,学生变聪明了。

(二)百分数分数应用题练习

参加乒乓球兴趣小组的共有80人,其中男生占60%,后又有一批男生加入,这时男生占总人数的2/3。问后来又加入男生多少人?

先把题中的数量关系译成图形,再从图形的观察分析可译成:若把原来的总人数80人看作5份,则男生占3份,女生占2份,因而推知现在的总人数为6份,加入的男生为6—5=1份,得加入的男生为80÷5=16(人)。

从这题不难看出:“数”、“形”互译的过程。既是解题过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要而巧妙。

第4篇:《数形结合》教学心得 邢茂华

《数形结合》教学心得

邢茂华

小学数学教学担负着培养小学生数学素养的特殊任务,而数学思想方法是数学的灵魂和精髓,是数学素养的本质所在,因此我们必须给予充分的重视和关注。数学新课程标准也明确指出:“通过义务教育阶段的数学学习,学生应该获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。”在数学教学中渗透数学思想比教给学生众多的数学知识更为重要,没有数学思想的数学知识,无疑是像一盘散落的珍珠,难以发出它应有的光彩。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。就“数形结合思想”来说,它在小学学习中是一种非常重要的数学思想方法,也是一种很好的教学方法。利用“数形结合”的思想方法能使数和形在学习中有机地统一起来,借助于形的直观来理解抽象的数,运用数和式来细致入微地刻画形的特征。直观与抽象相互配合、相互依存,有助于学生把握数学问题的本质,提高学生的数学学习能力和解决问题的能力。从低段学生的学习特点来分析,他们经常是以无意注意为主,更多的是关注“有趣、好玩、新奇的事物”,再加上他们的思维大多是以形象思维为主,理解抽象知识的难度很大。在实际教学中,如果我们教师能够科学运用数形结合的思想方法,把抽象内容形象化,有助于学生理解数学的实质,提高数学的思维水平。下面就自己的教学实践做一些思考。

一、数形结合,使概念掌握得更扎实。

对于小学一年级的学生来说,许多数学概念比较抽象,很难理解,特别需要视觉的有效应用,因此有时教师可采用数形结合的思想展开概念的教学,运用图形提供一定的数学问题情境,通过对图形的分析,帮助学生理解数学概念。例如,在教学100以内的数的认识时,学生大多对100以内的数顺背、倒背如流,看上去掌握得很不错。于是我出示了这样一道题考考学生:66接近70还是60呢?结果却发觉好多学生都不会。分析其原因主要是有些学生只是机械地会背这些数,关于数的顺序、大小等方面的知识其实掌握不佳,因而需要教师创设一定的情境让学生进一步感知和学习的。于是我在黑板上画了一条数轴,称它是一条带箭头的线,在数轴上逐一标出60~70,将抽象的数在可看得见的线上形象、直观地表示出来,将数与位置建立一一对应关系,这样就有助于学生理解数的顺序、大小。标出数字后我又在60和70处画了两幢房子,提问:“67这个数它喜欢去谁的家呢?”看着图画,几乎所有的学生都回答:“喜欢去70的家,因为66距离70比较近”。随后教师进一步说明:66再数4就是70,60要数6才是66,很显然是66接近70。这样,通过数轴的帮助,让学生把数与形进行合理的联系,从而确定了数的范围,使学生在头脑中建立了形象的数的模型,形成了一个直观的几何表象,这对培养学生的数感是很有效的。从以上的设计和学习过程中我们不难发现:“数”的思考、“形”的创设,既激发了学生的学习兴趣,又能有效地提高学生的数学思维水平。

二、数形结合,使算法理解得更透彻。

在小学数学课堂教学中,教师不但要教给学生知识,更重要的是让学生经历知识的形成过程,有计划、有意识地让学生掌握各种不同的探究策略,这是落实数学新课程目标、提高学生数学素养的必由之路。数形结合不仅是一种思想,也是一种很好的教学方法。在计算教学中,许多算理学生模棱两可,如能做到数形结合,学生可以更透彻地理解和掌握。如:教学20以内的进位加法时,我先创设生活情境,用谈话的方式引入:学校开运动会,后勤处的阿姨分给小朋友每人一个面包,分完后还剩下一些,老师用简单的图画表示(如图),继而问学生:“这幅图告诉我们什么,可以提出什么数学问题?”学生回答:“第一盒有9只面包,第二盒有5只,一共有多少只?”我接着提问:“算式怎么列?”“9+5是多少,你有什么好办法能计算出正确结果?” 四人小组展开讨论。在反馈中,我根据学生的回答,通过移动其中一只盒内的面包(可以把第一盒的5只面包移到第二盒中,也可以把第二盒的1只面包移到第一盒中),把另外一盒的面包装满,这其实就是凑十法的真正意义所在。通过这样的教学设计,把抽象的凑十法借助于形象的图示,使学生容易理解。通过数形结合,既强化了9加几的算法,又深刻理解了这个算法的算理所在,突破教学的重点和难点,收到了很好的教学效果。

三、数形结合,使问题解决得更形象。

新教材中的解决问题领域的学习内容,不同于老教材的编排形式和学习背景,而是遍布于各个章节的具体数学学习内容中,它重视了数学知识和生活实际之间的联系,淡化了解决问题的类型,为学生的解答带来了很大困难,尤其是一年级学生。因此,在教学的实践过程中,适时采用数形结合思想,把抽象的问题解决放在直观的情境中,在直观图示的导引和教师的启发下,学生就能比较容易地理解各种数量之间的关系,从而能有效提高学生比较、分析和综合的思维能力。例如,在一年级上册经常会出现这样的题目:小明的前面有5人,小明的后面有3人,一共有几人?这种类型的题目比较容易解答,大部分学生会思考:小明前面的人数加上小明再加上小明后面的人数,就是总人数。但往往在这题的后面,又会出现这样的题目:从前往后数,小明是第5个,从后往前数,小明是第6个,一共有几个小朋友?列成算式是:5+6-1。这两道题目使学生的思维受到了严重干扰,什么时候加1,什么时候减1?对于一年级的孩子来说这是很难用语言去表达清楚的。在教学过程中,若采用数形结合的思想,画画圆圈,透过现象看本质,一切问题就会迎刃而解。尤其是第二个问题,通过图示,使学生明白为何要减1,因为小明算了2次。

在解决问题中,除了用图示法,教师还经常使用线段图帮助学生理解题意、分析数量关系。其实,线段图就是采用了数与形相结合的形式,将事物之间的数量关系明显地表达出来,可以使抽象问题具体化、复杂问题简单化,为正确解题创造了条件。利用数形结合解题,实际上是一个“数”与“形”互相转化的过程,即把题目中的数量关系转化成图形,将抽象的数量关系形象化,再根据对图形的观察、分析、联想,逐步转化成算式,以达到问题的解决。“一图抵百语”,让学生逐步养成画图思考的习惯,感受到数与形结合的优点,从而提高学生的数形转化能力,实现形象思维和抽象思维的互助互补,相辅相成。

四、数形结合,使图形认识得更全面。

在一年级的教学过程中,大多是根据图形的呈现来解决抽象的数学问题,但有时利用“数”来指导“形”,可以使图形的教学更严谨、更科学,学生对图形的认识更全面。例如在教学完常见的平面图形和立体图形后,在练习册中出现数线段和数角的题目(如图)。第一幅图学生可采用直接数的方法,得到有3条线段。但数第二幅图中的线段的条数时难度就大了。教师应该引导学生有序地数,从左边的第一个点出发有几条线段,从第二个点出发有几条线段„„依次类推。也可引导学生这样数:有一条基本线段组成的线段有几条,有两条基本线段组成的线段有几条„„依次类推。在有序的数数中得到,求线段的总条数可列成算式:5+4+3+2+1。用算术的方法既克服了数线段的繁琐,又提高了正确率。同样地,以一年级上册“认识物体”为例,教学目标是学生会认长方体、正方体、球等一些基本的立体图形。教师除了教学生认识这些图形外,还可以让他们数一数这些图形有几个尖尖的点(就是顶点)、几条线(就是棱)、几个面。经常在教学中渗透数形结合的思想,就会在学生头脑中播下了形与数有密切联系的种子,久而久之,学生也就会逐渐体会到数学中形与数之间的无限魅力。

总之,在小学数学教学中,数形结合抓住了数与形之间的联系,以“形”的直观表达数,以“数”的精确研究形,能不失时机地为学生提供恰当的形象材料,将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生数学学习兴趣的培养、智力的开发、数学活动经验的积累和数学思想方法的渗透,使数学教学收到事半功倍之效。尤其对于低年级的小学生,巧妙地运用数形结合思想,使得数学教学充满乐趣,学生才能真正喜爱数学,学好数学,用好数学。

第5篇::教研心得数形结合的教学价值

教研心得数形结合的教学价值

数形结合思想的核心就是,数学的两大研究对象“形”与“数”之间的相互转化、相互表达和相互解决。而这种“相互转化、相互表达和相互解决”则是我们数学教学培育学生建立数学直观能力的重要方式。就“数”与“形”的“相互转化”而言,我们可以通过“形”来加深对“数”的理解,也可以通过“数”来加深对“形”的理解。譬如,就“负数的初步认识”而言,我们可以通过温度计之“零上与零下”、东西或南北之“方位”、事物发展之“进退”等“形”(数轴)来帮助小学生理解负数之“相反量的意义”。再譬如,就“用数对确定位置”而言,我们可以用行与列、排与列、横排与竖排之“序数”等“数”(数对)来帮助小学生明确“二维平面”上点的位置。就“数”与“形”的“相互表达”而言,我们可用“形”来表示“数”以把握“数量之间”的关系,也可用“数”来表示“形”以把握“形之属性”,加深相互之间的联系、沟通与理解。譬如,就“解决问题之‘倒推的策略’”而言,我们可以把事物或事件发展变化的过程“由始至终”地以“图”示意出来,问题便近乎解决:“由终至始”地逆推。但是,实际教学中,我们往往有过于关注其间的计算或忽视“示意图”的示意而非实意之倾向需要扭转或改正,否则极易造成学生对“倒推”之“事物发展变化之正序”依据的误解。再譬如,就“长方形和正方形的面积”而言,面积是平面图形的一个属性,但是,如何直观地感受或度量平面图形的面积,对小学生而言却是一个难题。我们可以通过引入(不同的)面积单位(其实就是数“1”),以帮助学生形成或强化其关于“平面图形的平面”的直观能力,为进一步推导长方形和正方

形的面积公式做好铺垫。然而,实际教学中,我们往往过于注重公式本身的推导而淡化学生对“平面图形的面积”和“(不同)面积单位”的直观感受。这一现象亟须逆转或改正,否则极易促使学生形成“长方形或正方形的面积计算即‘数小正方形的个数’”的误读。

就“数”与“形”的“相互解决”而言,它是在“数”与“形”的相互转化与相互表达基础上完成的。譬如,就“时间的认识”而言,我们是通过客观世界中事物的发展变化(譬如,春生夏长、秋收冬藏)而直观地加以感受的(这里,既有事物的量之“形”,又有其量之“数”)。但是,我们在小学数学中却是通过“指针的旋转”及钟表之“面上的刻度”来帮助小学生认识和把握时间之长短、快慢的。其实,这就是“时间事物”的量之“形”与“数”的相互分离、相互转化、相互表达和相互解决,而最终促使我们把握其本质特征的一种思维方式──数形结合思想的关键。《课程标准(20XX 年版)》提出:“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”其实,这里有三层含义。首先是“以形助数”,形象、直观地实现“由数至形”的转化与表达;其次是在“以形助数”基础上,促使“以形解数”的完成,实现“形”与“数”之间的相互解决;第三是在“以形助数”和“以形解数”基础上,帮助学生形成“数形结合”之数学直观能力,以便其更好地理解、学习与应用数学。

第6篇:向量与数形结合

数形结合是中学数学的重要思想方法之一,向量的运算法则以及运算律的给出,容易使学生认为向量是属于代数内容,但向量实际上又是属于几何范畴的.向量有时也会脱离图形而进行形式运算,但所研究的内容大都与图形有关。向量具有“数”与“形”的双重特征,因而它可以作为联系代数与几何的纽带,成为讨论数形结合的有力工具。

向量是重要的数学概念和工具,教材中的主要内容有:向量的概念和性质、向量的四种基本运算、解斜三角形、向量的应用。近几年的高考考察方向主要有两个方面:一是对向量的基本概念、基本运算的考察,二是对向量的工具作用的考察。向量与平面几何、解析几何、三角函数、函数与不等式、复数、立体几何都有联系,综合运用向量,采用数形结合的思想解决实际问题是对向量的基本要求,更好的体现了向量作为工具的实用性。

总之,由于向量具有几何形式和代数特征的“双重身分”,所以它是培养和提高学生数形结合能力的一个很好的载体。对优化学生的思维品质,培养和发展思维能力,发挥了巨大的作用。

数形结合

如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()(1)若通话时间少于120分,则A方案比B方案便宜20元; (2)若通话时间超过200分,则B方案......

数形结合教学片断

一、在理解算理过程中渗透数形结合思想。小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后......

学习心得数形结合

数形结合学习心得低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的......

《数形结合解决问题》教学反思

《数形结合解决问题》教学反思......

《数形结合解决问题》教学设计

刀豆文库小编为你整合推荐4篇《数形结合解决问题》教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

下载数形结合教学心得体会(精选6篇)word格式文档
下载数形结合教学心得体会(精选6篇).doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文