初中数学教学设计案例(精选4篇)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“初中数学优秀教案案例”。
第1篇:初中数学教学设计案例
初中数学教学设计案例
课题 正比例函数
一 教学目标
1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力
二 教学重点
理解正比例函数的概念
三 教学难点
利用正比例函数解决生活实际问题
四 教学过程 【提出问题】
1.《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。(1)阿甘大约平均每天跑步多少千米?
(2)阿甘的行程y(km)与时间x(天)之间有什么关系?(3)阿甘一个月(30天)的行程是多少千米? 【生】 列算式回答 【师】 点评总结
2.写出下列变量间的函数表达式
(1)正方形的周长l和半径r之间的关系
【进一步抽象问题让学生思考】(2)大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?(3)下列函数关系式有什么共同点?(小组合作)
【分析共同点和不同点,找出规律】(1)y=200x
(2)l=2∏r(3)m=7.8V 【生回答,师点评】 【引入新课】
1.正比例函数的概念:
一般地,形如y=kx(k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】 2 【例题讲解】
例1 在同一坐标系里,画出下列函数的图像: y=0.5x y=x y=3x 解: 【略】
【掌握函数图像的画法:列表,描点,连线】 3.练习
(1)已知正比例函数y=kx.当 x=3 时 y=6。求 k的值
(2)一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的? 当销售金额为360元时,则售出了多少本这种笔记本?
四 小结 五 课外作业
【反思】
由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。
第2篇:初中数学课程教学设计案例
初中数学课程教学设计案例
胡小华 课题名称:
完全平方公式(1)
一、内容简介 本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能: ①同类项的定义。②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。
四、教育理念和教学方式:
1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2.采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。3.教学评价方式:(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。
五、教学媒体:多媒体
六、教学和活动过程: 〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。〈二〉、分析问题
1.[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,(2m-3n)2= 4m2-12mn+9n2,(-2m+3n)2= 4m2-12mn+9n2。(1)原式的特点。(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。(4)三项与原多项式中两个单项式的关系。2.[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。3.[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题 1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2.判断:
()①(a-2b)2= a2-2ab+b2()②(2m+n)2= 2m2+4mn+n2()③(-n-3m)2= n2-6mn+9m2()④(5a+0.2b)2= 25a2+5ab+0.4b2()⑤(5a-0.2b)2= 5a2-5ab+0.04b2()⑥(-a-2b)2=(a+2b)2()⑦(2a-4b)2=(4a-2b)2()⑧(-5m+n)2=(-n+5m)2 3.小试牛刀
①(x+y)2 =______________;②(-y-x)2 =_______________;③(2x+3)2 =_____________;④(3a-2)2 =_______________;⑤(2x+3y)2 =____________;⑥(4x-5y)2 =______________;⑦(0.5m+n)2 =___________;⑧(a-0.6b)2 =_____________.〈四〉、学生小结
你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。(4)中间项是等号左边两项乘积的2倍。〈五〉、冒险岛:(1)(-3a+2b)2=________________________________(2)(-7-2m)2 =__________________________________(3)(-0.5m+2n)2=_______________________________(4)(3/5a-1/2b)2=________________________________(5)(mn+3)2=__________________________________(6)(a2b-0.2)2=_________________________________(7)(2xy2-3x2y)2=_______________________________(8)(2n3-3m3)2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。〈七〉[作业] p34 随堂练习
p36 习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比较困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,为完全平方公式第二节课的实际应用和提高应用做好充分的准备。. 教学内容精心组织,容量恰当,重点突出,体现内容的有效性、系统性和有序性; 3 . 重视启发,活跃思维,方式、方法多样,选择适当;教学环节紧凑、合理; 4 . 教学媒体使用适时、适量、适度、有效。5 . 教学结构组合优化,优质高效。
第3篇:初中数学教学案例
初中数学教学案例——探索平行线的性质
初中案例——探索平行线的性质
者海二中
傅锜
一、案例实施背景
⑴播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。
⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:探索平行线的性质(板书)。
2.数形结合,探究性质
⑴画图探究,归纳猜想。
教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,填写结果:
第一组:同位角()()角的度数()()数量关系()
第二组:同位角()()角的度数()()数量关系()
第三组:同位角()()角的度数()()数量关系()
第四组:同位角()()角的度数()()数量关系()
教师提出研究性问题二:
将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想
⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
3.引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)
又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)
所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)
教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
4.实际应用,优势互补
⑴(抢答)课本P21 练一练 1、2及习题 1、3.⑵(讨论解答)课本P22 习题、4、5.5.课堂总结:
这节课你有哪些收获?
⑴学生总结:平行线的性质1、2、3.⑵教师补充总结:
①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。
②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的性质1、2、3的表述)。④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)6.作业。学习与评价: P 2 3 6(选择);P24 7、12(拓展与延伸)。
七、数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:
1.教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。
2.学的转变
学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。
3.课堂氛围的转变
整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
第4篇:初中数学教学案例
初中数学教学案例
初中数学新课程实施5年多,已逐步走入了新课程的轨道。教师们更新理念,积极探索、勇于实验,数学课堂教学发生了可喜的变化:如学生主动地开展观察、实验、猜测、验证、推理与交流等数学活动。在新课程改革的实施过程中,一线教师作为课程的建设者、教学的研究者在课堂教学探究活动中面对学生的变化、课程变化、教学形式的变化,考试变化中有着太多的疑问、太多的困惑。这五年多我一直从事初中数学教学工作,多次参加省、全国级新课程研讨活动,现将我在新课程改革实验中的一些尝试、实践和与其他教师交流过程中的一些体会,产生如下一些反思:
一: 新课程可喜变化 1.学生更喜欢数学了 新课程重视学生创新精神和实践能力培养,比传统教材关注学生的兴趣与经验,更关注学生的现实世界,将教学目标转化为学生的“自我需求”,密切与学生生活及现代社会、科技发展相联系,引导学生亲身体验主动参与、亲身实践、独立思考、合作探究。课堂呈现勃勃生机,教学方式灵活多样,师生之间平等交流、共同学习的民主关系逐步形成,学生更喜欢数学了。2.教师面临新的机遇与挑战 新一轮的课程改革对每位教师来说,既是一种严峻的挑战,也是不可多得的一次机遇,教师是新课程的开发者,是“用教科书教,而不是教教科书”,重新认识、定位自己的角色。教师们迫切更新理念,提高整体素质,重研讨、重实践、重反思、重互助的新型教研氛围蔚然成风,新课改有力促进了教师的专业成长。
二: 新课程实验中的困惑与思考
1.课堂变“集市”,教学过于追求“情境化” 教学情境的创设是引发学生主动学习的启动环节,根据教学目标和教学内容有目的此创设教学环境,不仅可使学生掌握知识、技能,更能激活学生的问题意识,生动形象的数学问题与认知结构中的经验发生联系。部分教师在教学中过于追求情境化,“上游乐场分组玩”、“上街买东西”,单纯用“生活化”、“活动情趣化”冲淡了“数学味”,忽略了数学本身具有的魅力。新教材提倡设置问题情境、活动情境、故事情境、竞争情境等,但教师不能简单化机械理解新课程理念和教学方法。“境由心造”——富于时代气息的情境的设置只有在符合学生的心理特点及认知规律的前提下,学生才能学会从数学角度观察事物和思考问题,真正由情感体验激发有效的数学认知活动。
2.教师由“独奏者”过渡到“伴奏者”角色错位 学生是学习的主体,是学习的主人,教师的教学方式发生了变化。有些教师常讲“我们要蹲下来与学生对话”,如果是平等的,有必要蹲下来吗?部分教师常重教案的精心设计,注重从如何教的层面考虑,照“案”宣科时,更关注的是教学进度和当堂的教学效果,忽略了学生思维的发展和“做数学”的过程,置学习过程中的“想不到”于不顾,只是形式上的牵着学生去合作、探究,不愿放手让学生去体验问题、发现问题和提出问题,淡化探索,重模仿,教师实质上还是“解题的指导者”,走出了新课程倡导的学生是探索知识的“主动建构者”的意境。
3.分组合作学习、讨论“热闹”充当新课改“标签” 学生是否积极主动参与学习活动,乐于与他人合作交流是新课程教学中评价一个学生的重要指标,但评价要定性与定量相结合,尤其是定性部分更要关注学生是否真的有效参与、独立思考,真正获得解决问题的策略与方法。部分教师刻意追求上课气氛热闹,笑声越多越好,小组讨论流于形式,讨论问题数学思维层次低,指向不明,为讨论而讨论,以问代讲,“双向交流”太多太滥,教学出现盲目性、随意性,教学过程匆忙零乱,缺乏整体性。课堂教学贯穿新课程理念必须重视“三基”:基础知识、基本技能和学科基本思想方法,重视教学目标多元化:知识与能力,过程与方法,情感、态度和价值观。
4.电脑代替“人脑”,鼠标代替粉笔 计算机辅助教学作为现代化教学手段能处理好静与动、局部与整体、快与慢的关系,适时选取有探索意义的课件和内容能调动学生的学习情绪,提高兴趣,扩大知识的信息量,启迪思维,提高效率。有的教师整天忙于制作的课件只是课本搬家,替代了小黑板,有的数学课应用多媒体手段,视听图画晃动频繁,学生眼花缭乱,仅仅让五彩缤纷的图画增强学生的感官刺激,课件只是一种点缀,不利于学生思维能力培养和理性思考。教师应把现代化教学手段与传统的教学手段(教具、学具、黑板)结合起来,优势互补方能使教学手段整体优化。
5.“课堂教学反思”≠“反思型教师” 常有教师专心课堂教学后记,把教师本人的教学实施过程与教学设计比较,描述课堂中出现的异常与教学目标的状况差异以及今后需改善之处的一些经验与教训,把课后体会混同于教学反思,其实这只是教学反思的一个方面,有专家提出“反思就是行为主体对自身、对实践活动过程及相关的主体认识的再认识”。可喜的是不少教师以研究者的心态置身于教学情境中。尚需明确的是:真正反思,不仅要对我们采取的那些教育或教学行为进行批判性的思考,而且要对支配这些行为的潜在的教学观念进行重新认识。本次课改也是教育思想的“启蒙运动”,教师不再是“习题的讲解者”,作为课程的建设者的教师案桌上除了数学习题集,还应添置的是理念和理论。6.评价的多样化与呈现形式与中考指向“短路”
新课标指出:“评价的方式应多样化,可将考试、课题活动、撰写论文、小组活动、自我评价及日常观察等多种方法结合”。数学学习评价多样化,评价形式要求通过评分+评语形式呈现,而现实的升学压力和功利性,教师忽视了对学生基本素养的培养,“考什么,教什么”,“怎么考,怎么教”,“不考,不教”成为课堂主旋律,更关注中考命题走向、题型分值,而对全新的中考命题新框架、新思路、新亮点,部分教师只能“摸着石头过河”,缺泛细致深入的专业化研究。
新课改的精神、理念要转化为实践不是一朝一夕就能完成的,学而不思则罔,思而不学则殆,精研、精思,方能晓其义,识其神。深入开展对新课程的研讨交流,让课堂教学与研究“共生互补”的同时,不仅反思自己的课堂教学行为,而且要从主体认识上找根源,树立“问题意识”,积极实践,找差距,找问题,找不足,进一步提高自身的教育教学素质,真正走进初中数学新课程,为实现新课程的理想而努力。
初中数学教学设计案例课题 正比例函数一 教学目标1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力 二 教学重点理解正比......
初中数学教学案例——科学记数法凤翔县长青镇中学陈建辉一、案例实施背景本节课是2013-2014学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数......
初中数学教学案例从平时自测与正规考试分析,有的题型我们教师讲过,甚至几乎一模一样,但是学生仍然不会。学生存在“知其然,不知其所以然”现象。这是因为在备课时,我们往往只习惯......
初中数学教学案例【 尝试让孩子自主学习与探究】问题一、父亲现在的年龄是儿子的年龄的2倍,当父亲38岁的时候,儿子就10岁了,现在父亲和儿子各是多少岁?这个问题学生会有多种 列......
初中数学教学案例初中数学新课程实施5年多,已逐步走入了新课程的轨道。教师们更新理念,积极探索、勇于实验,数学课堂教学发生了可喜的变化:如学生主动地开展观察、实验、猜测、......