二元一次方程组教学设计_二元一次方程组教案

教学设计 时间:2020-02-27 22:44:33 收藏本文下载本文
【www.daodoc.com - 教学设计】

二元一次方程组教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二元一次方程组教案”。

3.3二元一次方程组(1课时)教学设计

【教学重点与难点】

教学重点:二元一次方程、二元一次方程组、二元一次方程组的定义及解的意义,以及检验一对数值是不是某个二元一次方程组的解

教学难点:求二元一次方程的特殊解 【教学目标】

1.能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解

2.通过实例认识二元一次方程和二元一次方程组都是反映数量关系的重要数学模型,能设两个未知数并列方程组表示实际问题中的两种相关的等量关系

3通过对本课知识的探究与应用,提高学生的逻辑思维能力和分析、解决问题的能力。

【教学过程】

一、创设情境 提出问题

(设计说明:从学生亲身体验中提出问题,引导学生思考,自然进入新课)问题: 星期天,我们8个人去合肥动物园玩,买门票花了34元.每张成人票5元,每张儿童票3元。他们到底去了几个成人、几个儿童呢?若设他们中有x个成人,y个儿童.由此你能得到怎样的方程? 先放开让学生说,接着提出下面的问题:

你得到的两个方程是一元一次方程吗?与一元一次方程比较有什么不同?如果让你给它起名字,你认为应该叫它什么合适?

二、探索新知 解决问题 1.二元一次方程的概念(设计说明:由实际问题引导学生开始对二元一次方程概念的探索。学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于学生对概念的理解)

学生给方程x+y=8,5x+3y=34命名之后,类比一元一次方程进一步讨论下面的问题:

问题1:请你写出几个二元一次方程,和同桌交流,判断写出的方程是否符合要求

问题2:请找出二元一次方程的特点

①含有两个未知数 ②含未知数项的次数是一次 ③是整式方程

问题3:二元一次方程的定义(类比一元一次方程的定义由学生归纳得出)含有两个未知数且含未知数项的最高次数都是1的方程叫二元一次方程 练一练:请判断下列各方程中,哪些是二元一次方程,哪些不是?并说明理由

⑴2x+5y=10 ⑵ 2x+y+z=1 ⑶⑹2x+10xy =0

+y=20(4)x2+2x+1=0 ⑸2a+3b=5 解析:(2)中含有三个未知数,(3)中含有分式,(4)中 x2的次数是2,(5)中10xy的次数是2,所以,(2)、(3)、(4)、(6)都不是二元一次方程,(1)、(5)是二元一次方程

(教学说明:本环节设计的问题引导学生用类比法分析二元一次方程的特征,逐步得出二元一次方程的定义,并在应用中进一步巩固对定义的理解)

2.二元一次方程的解

(设计说明:用类比的方法学习二元一次方程解的意义,在求解的过程中体会二元一次方程解的不唯一性,在正确理解的基础上归纳出解决问题的一般方法)

问题1 :满足方程x+y=22且符合问题实际意义的x,y的值有哪些? 问题2:二元一次方程的解

结合问题1,类比一元一次方程解的意义归纳出二元一次方程的解的意义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.同时指出:

(1)一元一次方程只有一个解,而二元一次方程有无限多解(本题中需要考虑x,y的实际意义),其中一个未知数(x或y)每取一个值,另一个未知数(x或y)就有惟一的值与它相对应.

(2)二元一次方程的每一个解是一对数值

(教学说明:用填表的方式学生容易找到x,y的值,然后结合表格数据得出二元一次方程解的意义,并进一步体会二元一次方程解的不唯一性)

3.二元一次方程组

方程X+Y=8和5X+3Y=34中,X的含义相同吗?Y呢?,x、y的含义分别相同.因而x,y必须同时满足方程X+Y=8和5X+3Y=34.把它们联立起来,得:

像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.说明:方程组各方程中,同一字母必须代表同一数量,才能合在一起 练习 已知x、y都是未知数,判别下列方程组是否为二元一次方程组? ①②

③④ 解析:①④是二元一次方程组,②中第一个方程是二元二次方程,③中的两个方程共含有3个未知数,所以②③不是二元一次方程组

4.二元一次方程组的解

问题1: 请找出同时满足方程X+Y=8和5X+3Y=34的x,y的值.指导学生找出x,y的值,并进一步说明这一组数值就是方程组的解 问题2:二元一次方程组的解

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解

三、巩固训练 熟练技能

(设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对相关观念的理解,形成初步技能。)

(1)教材99页练习

(2)1.已知方程2Xm+2+3Y1-2n=17是一个二元一次方程,则 m=___,n=___.2.求二元一次方程2X+Y=10的所有正整数解.四、反思总结

(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。)

问题1:本节课你学习了什么? 问题2:本节课你有哪些收获? 问题3:通过今天的学习,你想进一步探究的问题是什么?(教学说明:通过对三个问题的思考引导学生回顾自己的学习历程,梳理主要知识、方法,构建知识体系)

五、课堂小结

1.本课主要内容:二元一次方程、二元一次方程组、二元一次方程组的解,以及检验一对数值是不是某个二元一次方程组的解

2.主要学习方法:类比法 类比一元一次方程的知识学习二元一次方程的有关概念,在与二元一次方程解的比较中理解二元一次方程组的解的意义.3.学习本课需要注意的几个问题

(1)二元一次方程必须同时符合三个条件 :①这个方程中有且只有两个未知数;②含求知数项的次数是1;

③对未知数来说,构成方程的代数式是整式。

(2)与一元一次方程相比,二元一次方程的解是成对出现的且有无数个解.六、布置作业

1.二元一次方程5a-11b=21()

A.有且只有一解

B.有无数解

C.无解

D.有且只有两解

2.若│x-2│+(y+1)2=0,则y-x的值是()

A.-1

B.-2

C.-3

D.0

3.下列各式,属于二元一次方程的个数有()

①xy+2x-y=7;

②4x+1=x-y;

③ x+y=5; ④x=y;

⑤x2-y2=2 ⑥6x-2y

⑦x+y+z=1

⑧y(y-1)=2y2-y2+x

A.1

B.2

C.3

D.4.在二元一次方程- x+3y=2中,当x=4时,y=_______;当y=-1时,x=______. 5.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.

6.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.

7.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少? 8.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?

9.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()

xy246

A.2yx2xy246B.2xy2xy216C.y2x2xy246 D.2yx24x3yk10.方程组的解与x与y的值相等,则k等于()

2x3y5

二元一次方程组教学设计

二元一次方程组教学设计在教学工作者开展教学活动前,有必要进行细致的教学设计准备工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设......

二元一次方程组教学设计

二元一次方程组教学设计作为一位不辞辛劳的人民教师,很有必要精心设计一份教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。教学设计应该怎么写呢?下面是小编收集整......

二元一次方程组教学设计

二元一次方程组教学设计......

二元一次方程组教学设计

刀豆文库小编为你整合推荐8篇二元一次方程组教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

《二元一次方程组》教学设计

《二元一次方程组》教学设计《二元一次方程组》教学设计一、教学目标1.了解二元一次方程、二元一次方程组和它的解的概念.2.会将一个二元一次方程写成用含一个未知数的代数......

下载二元一次方程组教学设计word格式文档
下载二元一次方程组教学设计.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文