平面图形的密铺教学设计11月由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“图形密铺教学设计”。
课题:北师版数学
八年级下册
平面图形的密铺
课型:新授课
主备人 涧头集镇第二中学 李佰伟
授课时间
11月19日第二节课
教学目标:
1.通过探索平面图形的密铺,知道任意一个三角形、四边形、正六边形可以密铺,能运用这几种图形进行简单的密铺设计,培养学生的创造性思维。
2.促使学生在活动中,勇于探索图形间的相互关系,培养学生的空间观念,发展学生的合情推理能力提高分析问题、解决问题能力的同时渗透数形结合的思想。
教学重点:探索、发现多边形密铺的条件。
教学难点:运用三角形、四边形、正六边形进行简单的密铺设计。
教法及学法指导:从生活的例子引出课题探索、发现多边形密铺的条件开发、培养学生的创造性思维,使其理论联系实际。培养学生的合作交流意识和一定的审美情感,使学生进一步体会平面图形在现实生活中的广泛应用。
教学准备:
多媒体,导学案
【教学过程】
一、创设情景,引入课题
师:大家知道我手里拿的是什么吗?对,拼图!玩过拼图吗?(手拿一幅拼图)
生:玩过!
师:在拼图过程中,你是如何判断两块拼板是否拼接的?
生:从颜色一致及拼接时没有缝隙,可以连成一片来判断。
师:每当我们完成一幅拼图,我们会发现每一块拼板彼此之间不留缝隙。观察,生活中也有许多的拼接图案,如:
师:观察这些图案中的拼接图形有哪些特点?
生:第一幅和第二幅图是由大小相同的六边形和正方形组成。第三幅和第四幅由几种形状、大小相同的图形组合而成。
师:这些图形在拼接时有什么特点?
生:密密麻麻铺成一片,没有空隙。
定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌。
二、走入生活,提出问题
师:前几天,我去一位朋友家做客,发现他们家装潢得很漂亮。(展示图片)
师:在生活中,我们经常能见到各种花色和品种各异的地砖。仔细观察,就能发现这些墙壁和地面通常是用几种多边形砖铺砌成美丽的图案。如果你是房子的主人,你想用什么形状的地砖来设计你的房子。能密铺的图形在一个拼接点处有什么特点? 哪些单独的图形能密铺?
(2)用同一种四边形可以密铺吗?
在密铺过程中,请大家观察讨论:每个拼接点处的四个角与这种四边形的四个内角有什么关系?
任意全等的四边形可以密铺,在每个拼接点处有四个角,而这四个角的和恰好是这个四边形的四个内角的和,它们的和为360º。且相等的边互相重合。
生:单独用三角形、四边形和正六边形可以密铺。
…几个图形的内角拼接在一起时,其和等于360º,并使相等的边互相重合。
师:可以想象,同学们的设计一定会很独特,但你们的设计是否都合理?下面,我们一起来探讨。
三、合作交流,解决问题
1.活动一:正六边形能否进行密铺?
材料:若干个形状相同的正六边形。
形式 :由学生代表板演密铺过程。
目的:通过学生动手实践、独立思考,解决简单密铺问题。
师:这个图案看起来十分熟悉,大家觉得它像什么?
生:蜂窝!
师:看来,勤劳、可爱的小蜜蜂也懂得用正六边形来设计他的房子。
2.活动二:对三角形、四边形、正五边形能否密铺进行小组内的探索,并完成活动报告。小组汇报实验结果:用形状、大小完全相同三角形、四边形、正六边形都可以密铺。
师:对于正多边形,n边形的每个内角为,在每一个拼接点处设有m个内角彼此无重叠,无缝隙地拼接起来,则这些角的和为360°,因此有:×m=360可化为(m-2)(n-2)=4,m、n都是正整数,所以只有3种可能:
这就是正多边形中可以密铺的三种情况。(视情况适当补充。)
3思考正五边形可以密铺吗?3 2
正五边形的内角为144度不能够整除360度3个多4个有余所以不可以密铺。
四、共同探讨,设计图案
1.在一个正方形的内部按图1的方式剪去一个正三角形,并平移,形成图2,以这个新图案为“基本单位”能否进行密铺?若能,请设计一幅精美的密铺图案。
2.将以上正方形剪成4个全等的直角三角形,用这4个直角三角形拼出符合下列要求的图形(全部用上)。
(1)不是正方形的菱形(一个)
(2)不是正方形的矩形(一个)
(3)梯形(一个)(4)不是矩形和菱形的平行四边形(一个)
(5)不是梯形和平行四边形的四边形(一个)
(6)与以上画出的图形不全等的其他四边形(能拼几个)
3.动脑想一想:同时用边长相等的正八边形和正方形能否进行密铺?
同学们积极思考踊跃回答一名同学抢答:可以他们的内角分别为90度和135度 解如图
五、课堂小结
其实在我们的生活中存在着很多很多的数学信息,今天我们就了解到三角形、四边形和正六边形都可以密铺成一个平面。若某一种或几种几何图形能在每个公共顶点处恰好拼成一周角,则这样的平面图形可密铺。用形状和大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称平面图形的镶嵌.密铺的两个条件:
1、全等的一种或几种平面图形;
2、无空隙、不重叠铺成一片。
六达标检测
第1题.李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是()
② ① ③ ④
A.①②④
B.②③④
C.①③④
D.①②③
第2题.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是
度.
第3题.下列正多边形的组合中,能够铺满地面(即平面镶嵌)的是()
A.正三角形和正四边形
B.正四边形和正五边形 C.正五边形和正六边形
C.正六边形和正八边形
第4题.用两种正多边形镶嵌,不能与正三角形匹配的正多边形是 A.正方形
B.正六边形
C.正十二边形 D.正十八边形
第5题.右图是用12个全等的等腰梯形镶嵌成的图形,这个图形中等腰梯形的上底长与下底长的比是
.
第6题.如果限定用一种正多边形镶嵌,在下面的正多边形中,不能镶嵌成一个平面的是
()
A.正三角形
B.正方形
C.正五边形
D.正六边形
板书设计
平面图形的密铺
一
密铺的两个条件:
1、全等的一种或几种平面图形;
2、无空隙、不重叠铺成一片。
教学反思 本课是典型的数学与现实生活密切联系的一节课。教案中合理调整了各数学问题的出现次序。从现实的、有教学意义的情境出发,以学生周围生活中的实例:客厅、浴室、阳台地面平面图形的密铺照片作为引例,符合学生的年龄特征与生活经验,并能激发学生学习数学的兴趣,让学生在生动具体的情境中理解和认识数学知识,使学生的数学学习过程充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学活动。教师的教学设计充分考虑学生主体性的发挥,让学生经历自主“做数学”的过程。大多数学生的积极性被调动起来在这堂课的导人上,我完全按照教学目标进行设计。课程一开始我就创设情境,开展活动:1.进行图案欣赏,让学生感受平面图形密铺的美,激发学生的学习兴趣,并从潜意识里对密铺有初步的印象。从上课情况来看,学生欣赏图案时很专注,对图案有了很深刻的印象,这对于下一步教学活动的开展起到了很好的铺垫作用,完全达到了我的设计意图。2.开展“我做小小设计师”的活动,请同学们分小组自己设计地砖花纹,然后把每个小组的设计贴在黑板上展示,对每组的同学都提出表扬和鼓励。这时我没有告诉学生设计地砖需要注意哪些问题,实际上设计地砖需要注意不能有缝隙、不能重叠、要能铺成一片。为什么我不告诉学生这些呢?第一。地砖是生活中的常见物品,学生很熟悉,可能有部分同学能够注意到这个问题;第二,如果我先讲了这个问题,会使学生把注意力全放在如何使设计中不能有缝隙、不能重叠、要能铺成一片上,有可能会束缚学生的思维和创造性;第三,如果有的学生没有注意到这个问题,设计出来的图案不满足这个要求,那么我可以请其他学生指出他的不足,给他留下一个深刻的印象,在今后遇到同类问题时,他可以先思考再动手操作,养成良好的习惯。3.提出问题:每个小组的设计是否都能符合实际生活的要求?(有些不符合)哪些小组的设计不符合实际生活的要求?为什么不符合?(有空隙,或重叠,或不能铺成一片)由这些提问很自然地过渡到讲授新知识。讲授新知识这部分我分为两个步骤,由前面提问引出平面图形密铺的概念:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称作平面图形的镶嵌。介绍概念之后,我请学生来判断刚才的设计中是否都是密铺的,由此得出平面图形密铺的条件:不留空隙、不重叠地铺成一片。从课堂情况来看。因为有了前面的铺垫,学生很容易就接受了新知识,而且对新知识的理解也很透彻。下一步深入探究,得出结论。提出问题:常见的多边形中,哪些可以密铺呢?多边形密铺需要什么条件呢?先请同学们观察贴在黑板上的地砖设计,哪些多边形是密铺的?学生很容易得到矩形、正方形、正三角形、直角三角形等都是密铺的,进而引导学生得出多边形密铺的条件,以此来说明设计中的正五边形和正八边形为什么不能密铺,使学生由简单的学习知识上升到了知识的应用,会用的知识才是学生已经掌握的知识。这节课效果很好,学生感到数学学习并不难,用数学知识解决问题也很容易。
第四个环节是知识拓展。在这个环节中,我让学生来探索普通的三角形和四边形是否能密铺,这是对平面图形密铺知识的进一步运用,学生不但要懂得平面图形的密铺知识,还要具备很强的观察能力和动手能力,对学生提出了新的更高的要求。新课程理念中对学生的观察能力和动手能力有较高的要求,那么这就是培养学生观察能力和动手能力的一个好机会。当然,观察能力和动手能力的培养也不是一蹴而就的,需要长时间的实践,在这节课上,我发现学生在这方面的能力参差不齐,在今后的教学中,各位教师都要注意这一点。这个环节我采取了学生自主探索、自主解决问题的方式,由探索出结果的小组派代表来讲解规律,借此培养学生的综合能力,也使班上的其他同学产生羡慕或不服气的情绪,形成在数学学习上的你追我赶的态势,促使学生自主学习。在小结环节上,我提出问题:这节课,你们学到了什么?这样的提问使得每位同学都能总结自己这节课的收获,并且每位举手回答的同学都能有自己的答案,课堂效果很明显,学生回答很积极。并且很多学生回答得都很好。这节课总的来说是成功的,达到了我设计的目的,而且对我自身的素质也起到了很大的提高作用,我希望今后在工作中不断总结经验和教训,使自己的教学水平日益提高。
平面图形的密铺南京三中王涛一、设计意图:平面图形的密铺这一节是新课标中增加的内容,在新课标中明确指出本节课的目的是让学生通过探索平面图形的镶嵌,知道任意一个三角形、四......
如何引导学生开展探究性数学学习-------------《平面图形的密铺》教学案例·教学环境多媒体教室(有视频展示台)一、教学目标1.知识与技能目标:通过对“拼地板”的探索,让学生经......
《综合与实践——图形的密铺》教学设计教学内容:《义务教育教科书·数学》(青岛版)六年制四年级下册47、48页。教学目标:1.通过观察生活中常见的密铺现象,初步理解密铺的含义,知道......
奇妙的图形密铺教学内容:苏教版国标本五下第86页—87页 教学目标:1、通过观察、提炼,使学生理解图形的密铺的实际含义2、使学生通过铺一铺、比一比等实践活动,探索哪些图形可以......
1.教学设计学科名称:平面图形的密铺(八年级数学下册)2.所在班级情况,学生特点分析:学生的认知基础:学生已经掌握了图形的平移和对称,掌握了多边形的内角和、外角和公式、正多边形等,......