数学广角——植树问题 教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数学广角植树问题情境”。
数学广角——植树问题
1.使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2.初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
数学广角.................................................................4课时
第一课时
1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。2.掌握“植树问题”的第一种情况:“两端都要种”(即间隔数比株数少1的情况)。3.培养学生认真审题的好习惯。
重点:掌握“两端都要种的植树问题”的解题方法。
难点:掌握已知株距和全长,求株数的方法,以及已知株数和株距求全长的方法。
1.激情引入。
春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?美化绿化自己的家园,你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。
2.小游戏。
师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,看一看,数一数,一共可以系几个扣。学生动手试一试。
小组讨论,看一看能得出什么结论。
集体交流,通过刚才的游戏,你得出了什么结论。通过操作,观察讨论后得出系扣的个数比间隔数多1。3.验证。学生拿出一根20厘米的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。指名说说自己系了几个扣。验证扣的个数与间隔数的关系。
4.练习。同桌两人各拿一张纸条,互提要求在纸上分段,要求两端均画上标志。相互评价,互提建议。
1.出示教学教材第106页例1。
(1)读题,理解题意。(2)交流从题目中获取的信息和所要解决的问题。(3)学生动手试一试。(4)小组看图讨论,各自交流。想法一:100÷5=20,所以要准备20棵树苗。
想法二:我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。
(5)猜测。猜一猜,谁的思路对。(6)集体反馈,发现规律。
经过集体交流,发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。(7)教师讲解,帮助学生理解规律。
因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。
(8)研究列式的方法。100÷5=20(段)
20+1=21(棵)教师表扬能自己正确列式的学生,并请他们阐明思考过程。2.尝试。
(1)出示例题:在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?(2)读题,理解题意。
(3)明确已知条件和所求问题。(4)找寻数量间的关系。同伴探究,并得出结论。(5)独立列出算式。(6)集体反馈。
指名板书:18÷3=6(段)
6+1=7(盆)请学生分别说出每步的意思。
1.有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米? 2.学校领操台前从起点开始每隔2米插一面彩旗。一共需要多少面彩旗?(如右图)
1.新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯? 2.一个小学生从一楼上到三楼用了40秒。照这样计算,他从三楼上到六楼需要多长时间?
课堂作业新设计
1.14-1=13(段)2×13=26(米)2.12÷2=6(段)6+1=7(面)思维训练
1.1000÷8=125(段)125+1=126(盏)126×2=252(盏)2.40÷(3-1)=20(秒)20×(6-3)=60(秒)=1(分)
植树问题(一)
两端都种:株数=全长÷株距+1
全长=株距×(株数-1)例1:100÷5=20(段)
20+1=21(棵)
1.理解并掌握“植树问题”的基本解题方法,能解决一些实际生活中的与“植树”有关的问题。2.掌握“植树问题”的第二种情况:“两端都不种”(即间隔数比株数多1的情况)。
重点:掌握“两端都不种的植树问题”的解题方法。
难点:掌握已知株数和全长,求株距的方法,以及已知株数和株距,求全长的方法。
1.回答。
提问:已知全长和株距,怎样求株数? 教师根据学生回答板书:株数=全长÷株距+1 那么已知株距和株数,怎样求全长呢? 答后板书:全长=株距×(株数-1)
2.谈话。今天我们继续来研究另一种植树问题。
1.出示教材第107页例2。
(1)读题,理解题意。(2)投影出示教材图,帮助理解。(3)分组看图讨论。(4)尝试列式计算。(5)集体交流。教师板书:60÷3=20(段)20-1=19(棵)19×2=38(棵)(6)质疑。为什么减1?(因为两端都不种树,所以植树的棵数比间隔数少1)为什么要乘2?(因为是在两馆间的路两旁植树,所以要乘2)(7)比较与例1的不同。
先分组讨论,再集体交流。
例1是两端都要栽树,所以棵数比间隔数多1。例2是两端都不栽树,所以棵数比间隔数少1。(8)教师讲解,帮助学生理解。
教师讲述:相邻两棵树之间的距离是3米,60米里面有多少个3米,就是多少个间隔。我们知道大象馆和猩猩馆在路两端,也就是说两端不栽树,所以间隔数就比植树的棵数多1。
2.小游戏。
这里有一张彩纸条,老师想把它等分成2份,需要用剪刀剪几次?(一次)请你们拿出彩纸条,分别把它们分成3段、4段、5段,看一看要剪几次。看一看能得出什么结论。总结:剪的次数比纸条的段数少1。
1.两根栏杆之间每隔3米放一个障碍物,一共放了8个。这两根栏杆相距多少米? 2.两栋楼之间每隔2米种一棵树,共种了 15棵。这两栋楼相距多少米?
3.甲、乙两地相距4千米,每隔800米设一个站牌(甲、乙两地各设一个)。甲、乙两地一共设有多少个站牌?
课堂作业新设计
1.(8+1)×3=27(米)2.(15+1)×2=32(米)3.4千米=4000米 4000÷800+1=6(个)教材习题 第107页做一做:1.2km=2000m(2000÷50+1)×2=82(盏)2.35÷5=7(棵)
植树问题(二)
两端都是不种:株数=全长÷株距-1
全长=株距×(株数+1)60÷3=20(段)20-1=19(棵)19×2=38(棵)
1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。2.掌握“植树问题”的第三种情况:“关于一个封闭图形的植树问题”。3.培养学生认真审题的学习习惯。
重点:掌握封闭图形中“植树问题”的解题方法。
难点:掌握已知株数和全长,求株距的方法,以及已知株数和株距,求全长的方法。
1.回忆。
前两节课都学习了有关“植树问题”的哪些情况? 根据学生的回忆内容,教师整理板书:(1)两端都植树,则棵数比间隔数多1。全长、棵数、株距之间的关系:
棵数=全长÷株距+
1株距=全长÷(棵数-1)全长=株距×(棵数-1)
(2)一端植树,则棵数就比在两端植树时的棵数少1,也就是棵数与间隔数相等,全长、棵数、株距之间的关系: 全长=株距×棵数
棵数=全长÷株距
株距=全长÷棵数(3)两端都不植树,则棵数比间隔数少1。棵数=全长÷株距-1
株距=全长÷(棵数+1)2.设想。
你还知道有关“植树问题”的哪种情况?给同伴做一个介绍,说一说你是从哪知道或学到的。3.谈话。同学们,今天我们继续来研究第三种“植树问题”,这种情况比较特殊,也很有意思,看谁最先发现规律。
1.出示教材第108页例3。
(1)引导学生审题,从图中知道哪些信息?
生:从情境中知道张伯伯要在圆形池塘周围栽树,池塘的周长是120m,每隔10m栽1棵树,问题是求一共要栽多少棵树。
(2)引导学生:把这类问题转化成在封闭的图形上植树的问题。师:什么是封闭图形呢?
学生思考后回答:无论什么图形,只要起点和终点重合,即首尾相连就是封闭图形。如下图所示:
师:观察封闭图形上的棵数与间隔数,你有什么发现? 生:棵数等于间隔数。教师板书。
师:本题该怎么解答呢?
生:因为圆形池塘是封闭图形,根据“棵数等于间隔数”解答。120÷10=12(棵)师:如果把圆拉成直线,你能发现什么? 出示下图:
生:间隔数与棵数相同,也就是相当于一端栽树,另一端不栽树的情况。2.解决实际问题。
(1)完成教材第108页“做一做”。(2)读题,理解题意。(3)分析数量关系。(4)自主探究或同伴共同探究。(5)集体交流。(6)教师讲解,帮助学生理解。(7)套用关系式进行验证。(8)解答。150÷15=10(盏)
1.一个圆形花坛,它的周长是150米,每隔2米栽一棵树。共需树苗多少棵? 2.社区有一块正方形活动区,每边都栽种19棵树,四个角各种1棵。共种树多少棵? 3.时钟6时敲6下,10秒敲完。那么12时敲几下,需要几秒?
一个社区花园,它是由四个大小相等的等边三角形组成一个大的等边三角形。已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花。大三角形边上栽有多少棵花?整个花园共栽有多少棵花? 课堂作业新设计
1.150÷2=75(棵)2.(19-1)×4=72(棵)
3.10÷(6-1)=2(秒)2×(12-1)=22(秒)思维训练
大三角形三条边上共栽花:(9×2-1-1)×3=48(棵)
中间小三角形三条边上共栽花:(9-2)×3=21(棵)
整个花园共栽花:48+21=69(棵)教材习题
第108做一做:150÷15=10(盏)
植树问题(三)一个封闭图形的植树问题 株数=全长÷株距 全长=株距×株数
植树问题存在的几种情况
这几天我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢? 1.不封闭的情况。
(1)两端都植树:棵数=全长÷株距+1(2)一端植树:全长=株距×棵数
株距=全长÷(棵数-1)
棵数=全长÷株距
全长=株距×(棵数-1)株距=全长÷棵数
(3)两端都不植树:棵数=间隔数-1=全长÷株距-1 株距=全长÷(棵数+1)
2.封闭的情况。棵数=间隔数=周长÷株距
1.使学生能够根据实际条件,解决“植树问题”。2.熟练应用解决“植树问题”的方法。3.培养学生研究问题的科学素养。
重点:能根据条件研究计算方法。难点:熟练运用解决“植树问题”的方法。
同学们,今天我们用这几天学习的知识来解决一些生活中的实际问题。
1.解决实际问题。(1)板书:
四(1)班同学办安全小报,全班48人每人展示一张。在每张作品的四个角都钉上图钉,一共需要多少个图钉?(2)读题,理解题意。
(3)分小组讨论,制订方案。学生动手试一试。小组讨论,看一看能得出什么结论。重点是根据条件研究计算方法。
(4)分小组汇报设计方案。根据不同的方案进行计算。
①共1行,每行48张。列式:(1+1)×(48+1)=98(个)②共2行,每行24张。列式:(2+1)×(24+1)=75(个)③共3行,每行16张。列式:(3+1)×(16+1)=68(个)④共4行,每行12张。列式:(4+1)×(12+1)=65(个)⑤共6行,每行8张。列式:(6+1)×(8+1)=63(个)还有其他方法吗? 最简单的方法是48×4=192(个)。
但是,这种方法比较浪费图钉,生活中一般不会采用这种方法。(5)说一说,你会选择哪种方法布置展板。(6)观察算式,发现规律。
2.拓展。(1)板书练习。
李明上楼,从第一层到第三层要走36级台阶。如果从第一层走到第六层,需要走多少级台阶?(各层之间台阶数相同)
(2)理解题意。(3)尝试解答。(4)交流反馈。(5)教师讲解,帮助学生理解。
讲述:我们把从第一层到第二层看作1个间隔,第二层到第三层看作1个间隔,所以李明从第一层到第三层共走了2个间隔,根据“植树问题”的数量关系,可求出每相邻两层楼梯之间的台阶数为36÷(3-1)=18(级)。而从第一层到第六层共走了5个间隔,根据“植树问题”的数量关系可得,18×(6-1)=90(级)。
(6)归纳。这道题从表面看并不是“植树问题”,但是我们把层数看成棵数,可以抽象成为一条线段上的点数与间隔数之间的关系。
1.计划在一条长8064米的水渠的一条边上植树,包括两端在内,共植169棵。每相邻两棵树之间的距离是多少米? 2.椭圆形的跑道周长是400米。每隔40米装一盏红灯,两盏红灯之间装2盏绿灯。一共装多少盏灯?
舞蹈队排成一个方阵,最外一层的人数为60人,舞蹈队外层每边有多少人?这个方阵共有多少人? 参考答案 课堂作业新设计 1.8064÷(169-1)=48(米)
2.红灯:400÷40=10(盏)绿灯:10×2=20(盏)10+20=30(盏)思维训练 60÷4+1=16(人)16×16=256(人)教材习题
练习二十四
1.25-1=24(棵)2.12÷1+1=13(个3.3000÷200+1=16(根)4.(36-1)×6=210(m)5.8÷4×(12-1)=22(秒)6.32÷4-1=7(盆)7.42÷3=14(处)8.(5-1)×8=32(分)9.(51-1)×2=100(米)100÷(26-1)=4(米)
10.x=55 x=3.5 x=5 x=3 x=12 x=29 11.6+(10-1)×4=42(人)(38-6)÷4+1=9(张)12.60÷5=12(颗)13.(60+40)×2÷5=40(棵)14.(19-1)×4=72(枚)
15.(15-1)×4=56(名)15×15=225(名)*
*
教学内容:人教版新课标第八册《数学广角——植树问题》三维目标:知识与技能:根据具体情景辨认出在一条直线上植树问题的两种基本情况,80%的同学能阐述不同情况下棵数与间隔数的关......
《数学广角—植数问题》教案韶霭小学:彭茂春教学目标: 1.通过探究发现一条线段上两端要种、一端要种和两端不种三种不同情况植树问题的规律。2.使学生经历和体验“复杂问题简单......
[四下 数学广角 植树问题 教案]植树问题教学设计亭江中心小学 林仕平教学目标:一、知识与技能性:1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵......
植树问题【教材内容】:P117例1 【教学目标】:1.结合学生熟悉的生活情境,通过画线段图,使学生发现间隔数与植树棵数之间的关系;通过探究发现一条线段上不同情况植树问题的规律。2......
人教版五年级上册数学广角《植树问题》集体备课稿沙镇中心校 主备人:德胜一、单元教材分析“植树问题”是人教版五年级上册“数学广角”的内容,本单元内容由原实验教材四年级......