22.2 二次函数与一元二次方程 教学设计 教案_二次函数教案教学设计

教案模板 时间:2020-02-27 20:41:47 收藏本文下载本文
【www.daodoc.com - 教案模板】

22.2 二次函数与一元二次方程 教学设计 教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

教学准备

1.教学目标

知识与技能

1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.

2.会利用二次函数的图象求一元二次方程的近似解.过程与方法

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 情感态度价值观

通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.

2.教学重点/难点

重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.3.教学用具 4.标签

教学过程

教学过程设计

(一)问题的提出与解决

问题 如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系

考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?

分析:由于球的飞行高度h与飞行时间t的关系是二次函数

所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

(二)问题的讨论

二次函数的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?

先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:

(三)归纳 一般地,从二次函数(1)如果抛物线的图象可知,与x轴有公共点,公共点的横坐标是x0,那么当x的一个根.=x0时,函数的值是0,因此x=x0就是方程(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题

播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结 总结本节的知识点.(六)作业: 板书

二次函数与一元二次方程教学设计

二次函数与一元二次方程教学设计留格初中黄美娜一、教材分析1、教材所处的地位和作用:《二次函数与一元二次方程》是初中数学(山东教育出版社)九年级上册《二次函数》的一节内......

二次函数与一元二次方程教学设计

二次函数与一元二次方程教学设计(精选15篇)由网友“green”投稿提供,下面是小编为大家整理后的二次函数与一元二次方程教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。篇1......

二次函数与一元二次方程教案

22.5二次函数与一元二次方程(教案)一、教学目标1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的关系.2、理解二次函数与x轴交点的个数与一元二次方程的......

22.2二次函数与一元二次方程教学设计

22.2二次函数与一元二次方程【教学目标】 知识与技能:理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点个数、掌握方程与函数间的转化。 过程与方法:逐步探索二次函......

二次函数与一元二次方程教案1

二次函数与一元二次方程教案1 二次函数与一元二次方程教学目标(一)教学知识点 1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.理解二次函数与......

下载22.2 二次函数与一元二次方程 教学设计 教案word格式文档
下载22.2 二次函数与一元二次方程 教学设计 教案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文