有理数的乘方3教案_沪科版有理数乘方教案

教案模板 时间:2020-02-27 20:22:15 收藏本文下载本文
【www.daodoc.com - 教案模板】

有理数的乘方3教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“沪科版有理数乘方教案”。

学科:数学

教学内容:有理数的乘方

【学习目标】

1.能说出乘方的意义及其与乘法之间的关系. 2.了解底数、指数及幂的概念,并会辨识. 3.掌握有理数乘方的运算法则.

4.能说出科学记数法的意义,并会用科学记数法表示比较大的数.

【主体知识归纳】

n1.乘方 求几个相同因数的积的运算,叫做乘方,即在a中,a叫做底数,n叫做指数,a叫做幂. 2.幂 乘方的结果叫做幂.

n3.a的读法有两种:

(1)读作a的n次幂.

(2)读作a的n次方.

4.有理数的乘方法则 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.

n5.科学记数法 把一个大于10的数记成a×10的形式,其中a的整数位数只有一位,这种记数的方法,叫做科学记数法.

【基础知识讲解】

1.有理数的乘方,是求几个相同因数的积的运算,所以,有理数的乘方是特殊的有理数的乘法运算,即各因数都相同的乘法用一种新的运算形式表示,便是乘方.同而乘方的结果的符号与有理数乘法的积的运算符号的确定方法是完全一致的.如(-5)×(-5)×(-5)=34(-5)=-125.再如(-2)×(-2)×(-2)×(-2)=(-2)=16.

2.进行乘方运算时应注意以下几点:

4(1)当底数为负数时,底数必须加括号.如(-2).读作负2的4次方.

444(2)-3与(-3)不同,前者表示3的相反数,结果为负;后者表示4个-3的积,结果44为正.-3=-81,(-3)=81.

n3.科学记数法的形式:a×10,其中1≤a<10.

【例题精讲】 例1 计算:

(1)(-4); 2n

(2)-4;

2(3)(-

32); 432(4)();

4(5)-

225;

(6)-(-3).

剖析:第(1)、(3)、(4)小题直接根据乘方法则进行计算.(2)、(5)、(6)小题极易出现错误.(2)小题先算乘方,再求相反数.(5)小题先算22,正确答案-=9,再求9的相反数,结果应是-9.

解:(1)(-4)=16;

(4)(242

.(6)小题先算(-3)5329)=; 4162

(2)-4=-16;

(5)-

2(3)(- 329)=; 416

224=-; 55(6)-(-3)=-9.

说明:(1)进行有理数的运算时,首先应明确底数是什么.

22(2)(-a)与-a不同(a≠0).

2224224(3)-与-()不同,-=-,-()=-.

5552555例2 计算:

(1)(-6)×(-3);(2)-2×4;(3)(-2)×(-

3222122);(4)(-3+5). 3剖析:第(1)、(2)、(3)小题中,既有乘方,又有乘法,运算顺序应该是先算乘方,再算乘法;有括号的要先算括号内的.

3解:(1)(-6)×(-3)=(-6)×(-27)=162.

2(2)-2×4=-2×16=-32.

(3)(-2)×(-231218)=(-8)× 3992(4)(-3+5)=2=4 说明:对于有理数的混合运算,其运算顺序是:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右依次计算;(3)如果有括号,先算括号内的.

例3 计算(2212212)×(-1)()(1.5)3232剖析:本题含乘方、减法及乘除法四种运算,先算乘方,再算乘除法,最后把减法转化为加法.

221221434142)×(-1)()(1.5)=()()32329292943148=(1)(2). 92299解:(说明:进行有理数混合运算时,首先要观察有几种运算,然后再分析有无简便方法,最后再确定运算顺序.

1222

2)+(2b-4)=0,求-a+b的值. 2122剖析:因为对于任意有理数的平方非负这一性质,可得(a+)≥0,且(2b-4)≥0,2121112又因为(a+)+(2b-4)=0,得a+=0,a=-;2b-4=0,b=2.把a=-,b2222例4 已知a、b为有理数,且(a+=2,代入-a+b中.

解:∵(a+22121222)≥0,(2b-4)≥0,且(a+)+(2b-4)=0,22

∴a+111221322=0,a=-.2b-4=0,b=2.∴-a+b=-(-)+2=-+4=3. 22244说明:前面我们学习了任何有理数的绝对值非负.此题告诉我们,任意一个有理数的偶次方也是非负数,注意n个非负数的和仍是非负数;如果n个非负数的和等于0,那么其中的每个数必为0.若此题改为:|a+22

1222

|+(2b-4)=0,求-a+b的值时,其解法完全一2样,故若a+b=0,则a=0,b=0.

例5 用科学记数法表示下列各数.

(1)270.3;(2)3870000;(3)光的速度约为300 000 000米/秒;(4)0.5×9×1000000;(5)10.

2解:(1)270.3=2.703×100=2.703×10.

6(2)3870000=3.87×1000000=3.87×10.

8(3)300000000=3×100000000=3×10.

6(4)0.5×9×1000000=4.5×10.(5)10=1×10.

n说明:科学记数法a×10中,a是小于10且大于等于1的数,n比原数位的整数位数少1,比如:3870000000是10位数,指数n就是9.这就是说n等于原数的整数位数减1,而

23不是比所有的数位和少1.如179.4=1.794×10,而不是179.4=1794×10.

【思路拓展题】

悬而未决的费尔马数

伟大的科学家也有犯错误的时候,“近代数论之父”十六世纪法国数学家费尔马就是一

2n例.1640年费尔马发现:设Fn=2+1,当n=0,1,2,3,4时,Fn分别等于3,5,17,257,65537,都是素数.这种素数被称为“费尔马数”,他没有再进行验证就直接猜测:对于一切自然数n,Fn都是素数,即2+1,2+1,2+1,2+1,2+1,„„,2+

222324252n1都是素数.不幸的是,他猜错了.1732年,欧拉发现:F5=2+1=4294967297=641×6700417,偏偏是一个合数!1880年又有人发现F6也是一个合数,不仅如此,以后陆续又有人发现F7,F8,„„,F19以及许多n值很大的Fn全都是合数!虽然Fn的值随着n的增大,以极快的速度变大(如F8=***7×一个62位的数),目前能判断Fn是素数还是合数的也只有几十个,但人们惊奇地发现,除费尔马当年给出的五个外,至今尚未发现新的素数,这一结果使人们反向猜测:是否只有有限个费尔马数,是否除费尔马给出的5个素数外再也没有费尔马数了,可惜的是,这个问题至今仍是一个悬而未决的问题,成为数学中的一个谜.

【同步达纲练习】 1.判断题

(1)n个因数的积的运算叫乘方.

(2)任何有理数的偶次幂,都是正数.

(3)负数的平方大于它本身.

(4)任何有理数的平方都小于它的立方.

n(5)如果(-2)<0,则n一定是奇数.

224(6)(-).

33(7)(-1)×(-3)=-3.(8)-2×(-2.填空题(1)-244131)=-. 22425=_____________.

(2)(-1-322)=______________. 3(3)如果a<0,那么a_________0.

n(4)如果(-3)>0,那么n一定是_________.(5)把(-333)·(-)·(-)写成幂的形式_________. 444n(6)如果a=0,那么a=_________.

(7)如果一个数的立方等于它本身,则这个数是___________.

3(8)5表示_________;3×5表示___________.

97(9)5×10是_________位数,1.5×10是_________位数.(10)-4的平方的倒数与

1的立方的相反数的和是__________. 22(11)a为有理数,则a_______0,-a____________0.

2233(12)(-2)+2-(-3)+(-3)=__________.(13)28490000用科学记数法表示为___________.

2(14)如果-xy>0,那么y__________0. 3.选择题

(1)下列各式成立的是

2A.5=5×2 25 B.5=2C.223234 92D.(-)4 9(2)用科学记数法表示的数是

3A.31.2×10B.3.12×103C.0.312×10

5D.25×10

(3)平方得16的数是

A.4 B.-4 C.4或-4 D.8(4)下列各种说法中,正确的是

2A.-8可读作负的8的平方

2B.a一定是正数

22C.∵2+2=4=2,∴a+a=a

5D.1×10=1000 2(5)-a的值一定是 A.正数 B.负数 C.0 D.负数或0

2(6)下面给出了四种说法,①a的最小值是0②互为倒数的两个有理数的同次幂仍然互为倒数③互为相反数的两个有理数的同次幂仍然互为相反数④若两个有理数的平方相等,那么,这两个数也相等.其中正确的个数有

A.4 B.3 C.2 D.1

35(7)若m<n<0,则m·(m-n)的符号为 A.正 B.负 C.非负 D.非正

2(8)若(6-a)+12=37,则a的值为 A.5 B.-5 C.±5 D.1或11 4.计算下列各式的值: 222(1)-3-2;

(2)-(-0.5);

(3)(-0.25×4);

(5)-1-(-1)4200230

(4)(-1-

13); 3+(-1)

2003;

(6)(-2

1122)÷(-5)×(-3)-2-(-1); 23

(7)(12222)-(5-9)-|8-19|; 39(8)8-2×3-(-2×3)+(2×3).

222

5.用科学记数法表示下列各数:(1)100300;

(2)-2760;

(3)34010;

(4)-274.28;

(5)38900000000;

(6)-20309000.

6.下列用科学记数法记出的数,原数各是什么?

6548(1)6.9×10;(2)7.01×10;(3)3.14×10;(4)-3.71×10;

574(5)1.002×10;(6)10;

(7)-2×10.

3327.已知(5-a)+12=39,求a-a+3的值.

baab8.已知a=2,b=3,求(a-b)(b+a)的值.

参考答案

【同步达纲练习】

1.(1)×(2)×(3)√(4)×(5)√(6)×(7)√(8)×

162533(2)(3)

162.(1)-3.(1)D(2)B(3)C(4)A(5)D(6)C(7)A(8)D 4.(1)-13(2)-0.25(3)1(4)-(6)-6

64(5)-3 272(7)-24(8)-10 35

45.(1)1.003×10(2)-2.76×10(3)3.401×10

2107(4)-2.7428×10(5)3.89×10(6)-2.0309×10

6.(1)6900000(2)701000(3)31400(4)-371000000(5)100200(6)10000000

(7)-20000 7.7 8. -17

有理数乘方第1课时 教案3

2.5 有理数乘方(第1课时)【教学目标】知识目标:1.使学生理解乘、幂、底数、指数的概念,了解乘方概念的产生过程;2.掌握乘方与幂的表示法,理解幂的符号法则;3.学会相同因数的乘方与乘法......

有理数乘方第2课时 教案3

!2.5 有理数乘方(第2课时)【教学目标】知识目标:1.学生掌握科学记数法,会用科学记数法来表示一个数;2.了解乘方在生活实际中的简单应用,初步学会对含有较大数字的信息作出合理的解......

有理数的乘方的教案

有理数的乘方的教案有理数的乘方一、 学什么1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。二、 怎样......

有理数的乘方的教案

有理数的乘方一、学什么1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。二、怎样学归纳概念n个a相乘aaa=......

有理数的乘方教案

有理数的乘方教案作为一位杰出的教职工,有必要进行细致的教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。那要怎么写好教案呢?下面是小编帮大家整理的有理数的乘方......

下载有理数的乘方3教案word格式文档
下载有理数的乘方3教案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文