椭圆的定义及其标准方程教案_椭圆标准方程教案

教案模板 时间:2020-02-27 11:45:42 收藏本文下载本文
【www.daodoc.com - 教案模板】

椭圆的定义及其标准方程教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“椭圆标准方程教案”。

§14.2椭圆的定义与标准方程

一、教材分析

本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章的重点内容之一。

二、教学目标

(一)知识目标

1、理解并掌握椭圆的定义,明确焦点、焦距的概念;

2、掌握椭圆的标准方程;

(二)能力目标

培养学生发现规律、寻求规律、认识规律并利用规律解决实际问题的能力。

(三)德育目标

1、使学生认识并理解世间一切事物的运动都是有规律的;

2、使学生通过运动规律,认清事物运动的本质。

三、教学重、难点及关键

1、重点:椭圆的定义和椭圆的标准方程。

2、难点:椭圆标准方程的推导。

3、关键:突破难点要抓住“建立坐标系”和“化简方程”两个环节。

四、教学方法

主要采用探究实践、启发与讲练相结合五、教具

主要采用多媒体课件

六、教学过程

1、创设情景、引入概念

(多媒体演示)展示相应的图片,让学生在感受美的同时也了解到本节课所要研究的图形——椭圆。

提问:这些图片中的实物的形状是什么的图形? 学生回答:椭圆

请同学再列举一些椭圆形的例子,教师指出椭圆在生活中很常见,今天我们就一起学习----椭圆(给出课题)。

教师指出:通过前面的学习知道,圆是平面内与定点的距离等于定长的点的轨迹,那么椭圆又是满足什么条件的点的轨迹呢?我们一起来探究。

2、新知探究、形成概念

利用多媒体演示椭圆的画法。

依据多媒体演示的画法,请学生思考:图中哪些量是不变的,哪些量是可变化的,试着用自己的语言说一说怎样形成椭圆?

让学生拿出课前准备的纸板、细绳、图钉,根据自己得出的椭圆画法,试着用手中的工具画出椭圆。让学生动手,使其尝试到成功的喜悦,同时提醒学生注意绳长要大于两图钉之间的距离。

教师启发、提问,并由学生归纳出椭圆的定义。定义:平面内与两个定点F1、F2的距离之和等于常数2a(大于|F1F2|)的点的轨迹叫做椭圆。其中两个定点叫做焦点,两焦点的距离叫做焦距,记为2c。

提问:若令M为椭圆上任意一点,可否把定义用数学表达式写出?

学生思考回答:|MF1|+|MF2|=2a 教师指出:此式称为定义式,其应用非常广泛。

3、标准方程的猜测与推导

依据多媒体的动态数据来猜测椭圆的方程

问:请你猜测一下椭圆的方程?

x2y2学生:(221,a>b>0)

ab

根据一般的求轨迹方程步骤推导椭圆的方程。

(1)建系:以F1、F2所在直线为x轴,线段F1F2的中垂线为y轴建立直角坐标系。

(2)设点: 设M(x,y)是椭圆上任意一点,因|F1F2|=2c,则F1(-c,0),F2(c,0)(学生回答)

(3)列式: 让学生自己列出:|MF1|+|MF2|=2a,并将其坐标化后得:xc2y2xc2y22a

(4)化简:(过程可以简略,不作要求)

x2y2教师指出:方程221ab0叫做椭圆的标准方程,其焦点

ab在x轴上,焦点坐标为F1(-c,0),F2(c,0)且a2b2c2 启发:若把坐标系中的x轴、y轴的位置互换,椭圆的焦点位置如何?方程形式又如何?

y2x2让学生合理猜想,得出:221

ab教师指出此方程同样可用上述方法进行推导。思考:如何依据标准方程判断焦点的位置?

学生观察后可得出:含x2,y2的分式的分母谁大,焦点就在那个轴上。

五秒快速练习:判断下列椭圆的焦点位置?

x2y2y2x21、

12、1

152053y2x2x2y23、

14、1

111825244、知识应用

例1:已知椭圆的焦点在x轴上,焦距为8,椭圆上的点到两个焦点的距离之和为10,求椭圆的标准方程.先给学生提示,再让学生自己动手做,并抽取两位同学所做的进行讲评,最后课件给出标准答案。例2:求下列椭圆的焦点和焦距

x2y2(1)1;

(2)2x2y216

54分析:解题关键是判断椭圆的焦点在哪条坐标轴上,方法是观察标准方程中含x项与含y项的分母,哪项的分母大,焦点就在哪条坐标轴上。学生先做,然后课件给出正解。

分组练习:求椭圆的焦距与焦点坐标?

x2y2①1 156x2y21 ②251693,0,焦距2c6焦点坐标为0,12,焦距2c24焦点坐标为请学生给出结果,体会成功的喜悦。同时给出练习③9x225y2225让学生独立完成,并对学生所做的进行讲评。

5、归纳小结

(1)知识小结:引导学生归纳,最后教师给出知识结构图。(2)方法小结:(教师小结)

①用坐标法研究曲线;

②用运动、变化的观点分析问题;

6、作业:练习册相应的练习。

椭圆标准方程教案

刀豆文库小编为你整合推荐8篇椭圆标准方程教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

椭圆标准方程教案

椭圆标准方程教案椭圆标准方程教案椭圆标准方程教案教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作......

椭圆及其标准方程教案

椭圆及其标准方程教案教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程,会由标准方程求出椭圆的交点和焦距;(二)能力目标:通过对椭圆概念的引入和标......

椭圆及其标准方程教案

椭圆及其标准方程教案湖北郧阳中学梁学文教学目标:使学生理解椭圆的定义,掌握椭圆的标准方程及标准方程的推导过程培养学生运用坐标解决集合问题的能力培养学生发现规律、寻......

椭圆定义及标准方程教案模板(精选4篇)

第1篇:椭圆的定义及其标准方程教案§14.2椭圆的定义与标准方程一、教材分析本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用......

下载椭圆的定义及其标准方程教案word格式文档
下载椭圆的定义及其标准方程教案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文