高中数学论文由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“高中数学免费论文”。
如何让学生主动思考
要学好数学必需要让学生主动思考,主动思考依耐于好的问题的提出。
一个好的问题应该具备以下特诊:
(1)有与它有关的简单的、学生能够理解和解决的问题;
(2)在学生已有的知识和能力范围内有多种解决途径;
(3)学生能据此导出其他类似的问题;
(4)学生有直接的兴趣或有一个有趣的答案;
(5)能用学生已有的知识和方法或通过探索可达到的知识和方法进行推广。
究竟怎样才能提出好的问题
(1)联系生活实际,设置问题情景
数学作为基础学科,与我们每个人都有着十分密切的联系,利用人们熟悉的日常生活的例子设置问题情景,引发学生的问题意识。如在《等比数列求和公式》的教学中,我首先说:“同学们,从今天开始,我愿意在一个月内每天给你100元钱,但在这个月内,你必须第一天回扣我1分钱,第二天回扣我2分钱,……,即后一天回扣给我的全数是前一天的2倍,有谁愿意?”,这个例子具有趣味性,学生顿时活跃起来,对问题产生了浓厚的兴趣。
又如在讲授“面面垂直判定定理”时,我设计了这样的导入语:“建筑工地上,泥水匠正在砌墙(构设情景,吸引学生的注意)。为了保证墙面与地面的垂直,用一根吊着铅锤的绳来看看细绳与培面是否吻合。如此,能保证墙面与地面垂直吗?泥水匠或许不知道其中的奥秘,但第 1页(共7页)
你们能不能找到理论依据呢(提出问题,使学生思考)?”从生活情景入手,提出在熟视无睹、习以为常情况下的新问题,可激发学生兴趣,进入良好学习状态。
(2)运用认知冲突设置问题情境。即运用认知冲突形成疑问,创设情境。
如在讲解“线性规划”这个内容时,我的处理方案:
提出问题1:已知,1xy2,2xy4,求z4xy的最值。学生正常的解法是:将条件中两个同向不等式相加得:故64x12,将第一个不等式化为2xy1后再与第二个不等式相加得0y3,于是有64xy27
22。再用最小值6和最大值27代回验证发现z
2其实不能取到这两个最值。
这个过程会促使学生反思,使学生发现4xy取6和27的x,y是不满足原2
始条件的,从而形成认知冲突,然后引导讨论、研究,发现了下面的思路:4xy3xy5xy,而由条件有33xy3,55xy10,2222
2两式相加得:134xy13,进而解决问题。接着又提出新的问题: 2
问题2 :已知x4y3,3x5y25,x1,求z2xy的最值。
学生们在用上面的方法尝试一番后发现对此问题不适用,再一次陷入困境,从而出现新的认知冲突,问题情境自然形成了。
(3)习题教学中,展示原型题,设置问题情景。
习题教学是中学数学教学的重要组成部分。在习题教学中,学生往往容易成为解题的机器,教师出示一题,学生思考后在教师的指导下,解决一题,我们在习题课教学中,改变模式,教师出示的是一原型题,要求学生通过变化产生尽可能多的新问题。
例如:新教材高二(上)P132A组第6使它与两个焦点的连线互相垂直。
引申x2y21: 椭圆1的焦点为459x2y2题:在椭圆1上求一点,459Fl、F2,点P为其上动点,当F1PF2
时,点P的横坐标是_______。
引申x2y22: 椭圆1的焦点为459Fl、F2,点P为其上动点,当F1PF2为钝角时,点P横坐标的取值范围是_______。
引申
b
ax2y23:若在椭圆221(a>b>0)上存在一点abP,使得F1PF290,则的取值范围为_______。
引申x2y24:已知椭圆221(a>b>0),F1、F2是两个焦点,对于给定的角ab
0,探求在椭圆上存在点P,使得F1PF2的条件。
上面由原型题引申出来的4道题有一定的开放性和探究性,完全可以在课堂上采用分小组合作交流、讨论,共同探讨,让教学过程真正达到有效性。
怎样让学生主动提出问题
(1)引导学生对数学基本知识、数学思想方法的提问,培养学生的提问能力。
围绕数学基本知识,引导学生提出下列一些问题:定义,概念是怎样引入(产生)的?它的关键是什么?定理的逆命题、否命题是否成立?公式、法则能否反用、变用?定义、概念、定理、公式在解题中的作用是什么?围绕教学内容,引导学生归纳这一节、这一章有哪些主要的数学思想方法?定理证明中用到了哪些数学思想方法?数学
思想方法的解决问题时是如何应用的?
(2)习题教学通过问题变式来培养学生的提问能力。
根据波利亚的“怎样解题”表,通过实例引导学生从以下几方面提问:已知条件是什么?要求的问题是什么?你以前见过它吗?能否提出一个相似的问题?你能否提出一个更容易着手的问题?一个更普遍的问题?一个更特殊的问题?你能解决问题的一部分吗?是否需要辅助问题?等等。问题变式是为了实现一定的教学目的,变化问题的条件、情景、思考角度而形成新问题的一种教学策略。
如在讲解轴对称这个内容时,我根据学生的思维特点,做了一个循序渐进的教学设计:
原题:已知直线l及同侧两点A、B,试在直线l上选一点C,使点C到点A、B的距离和最小。
略解:利用对称思想,将A或B对称到l的另一侧,相连即可求出答案。变式1:如下图(左),请你设计出下列两种方案下的最短行走路线。方案1:小华由家先去姥姥家,再去河边(河流的上边界所在直线); 方案2:小华由家先去河边,再去姥姥家。
略解:方案1:ABBC(红色折线);方案2:ADDB(蓝色折线)
l l
变式2:如下图(左),已知l1、l2表示两条相交于点A的小河,P点是河
水化验室,现想从P点出发,先到河l1取点水样,然后再到河l2取点水
样,最后回到P处化验河水,怎么走会使得路程最短呢?此处要引导学生积极讨论,如学生小王说:“我从P点垂直走向河l1,取好水后再
垂直走向l2,然后回到点P。” 请同学们想想,对不对?
略解:作点P关于l1、l2的对称点P 连接PP与河l1、l2相交于点B、C12,1、P2,(在该图的条件下是有两个交点的),则PBBCCP即为所求线路(红色折线)。
变式3:(2006年广州一模第10题)已知P(t,t),tR,点M是圆x2(y1)21上的动点,点N4是圆(x2)2y21上的动点,则|PN||PM|的4最大值是()
A
1B
.1D.
2略解:答案是D,这道题很好地考查了学生的识图能力,区分度比较
好。这题只要将其中一个圆关于直线y=x对称,然后连接两圆的圆心,其延长线交直线y=x于原点,则原点为所求的P 点。
其实还可以启发学生去总结:若求直线上一动点到直线外两定点的距离之和的最小值,要把这两个定点转化到直线的异侧;若求直线上一动点到直线外两定点的距离之差(绝对值)的最大值,要把这两个定点转化到直线的同侧。
师生共同讨论,培养学生解决问题的能力,让学生主动思考起来感觉到问题的存在,即让学生感到有某种解决的需要。
师:(1)一尺之棰,日取其半,万世不竭。
(2)一位数学家曾经说过:你如果能将一张报纸对折38次,我就能顺着它在今天晚上爬上月球。我们一起来分析一下这两个实例所包涵
1的数学问题。生:(1)由尺的长度得到数列:1,1,1,,, 242n
(2)由报纸的层数得到数列:2,4,8,…,2n,…
问:以上数列是等差数列吗?它们有何特点?
提出好的问题有助于培养学生的主体意识、主动精神,培养学生的合作意识和创造能力,是当前新课程标准下进行课堂教学改革的一种潮流性方式,也是一个很大的课题。在新一轮课程改革中,它不仅仅是科研人员的话题,更需要我们一线教师主动参与,积极探索,让我们在现代教学观念、现代教育理论的指导下,携起手来,以新的观念,积极的心态,让“问题教学”的教学模式成为新课程改革中一个新亮点。
论文浅析数学教学中学生创新能力的培养单位:睢县高级中学姓名:姬忠杰时间:2009年5月10日浅析数学教学中学生创新能力的培养摘要:国家的兴旺,民族的振兴呼唤着素质教育,素质教育的......
高中数学论文(共14篇)由网友“丫丫怪”投稿提供,下面小编为大家整理后的高中数学论文,希望大家喜欢!篇1:高中数学论文 一、数学知识的抽象性数学知识有高度抽象性的特点,这种抽象......
关于如何提高数学课堂效率的探讨【摘要】在现在的社会,随着科学技术的不断发展。教学理念和教学方式也需要不断的进步和更新。以至于各种竞赛课、观摩课、展示课、公开课这些......
1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2 b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、......
【导语】刀豆文库的会员“林峪肌”为你整理了“高中数学论文(通用5篇)”范文,希望对你的学习、工作有参考借鉴作用。高中数学论文 篇1数学是什么呢?单纯的算式、枯廖乏味得标题?......