几何画板在教学中的应用由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“几何画板在教学中以用”。
几何画板在教学中的应用
新都区龙安中学
骆春梅
几年来我在数学学科的”整合”实践中,应用”几何画板”的辅助教学实验获得了一些经验,尤其在培养学生”创新思想”和”实践能力”方面,取得了一些成效。下面我将作一些介绍。
1.在动态中表达几何关系的图版
“几何画板”是美国软件“The Geometer’s Sketchpad”的汉化版,打开“几何画板”后我们看到的界面,就像一块黑板。图版的左侧是一列工具图标:移动、画点、画圆、画线、和文字工具。可以用这些工具按照尺规作图的法则画出各种几何图形。
画出的图形与黑板上的图形不同是动态的,在动态中保持设定的几何关系不变。在画板上任意取A、B、C三点,连接成三角形同时作出AB边上的中点D。此时利用“移动”工具拉动A点就看到了一个变化着的三角形,在变化中D点保持为AB线段的中点。
同样可以拉动B、C两点或是移动三角形的边(亦能运用一些技巧让某几个元素同时移动)。如果作出三角形ABC三条边上的中线,就可以在这种动态变化中清楚观察到“任意三角形三中线交于一点”的现象。过去讨论这一条几何定理是必须依靠逻辑证明的,现在利用“几何画板”可以根据观察来确认这个事实。
还可以利用系统提供的其它功能(例如度量的功能,动态地观察有关的数据),来发现图形中存在的规律和各种关系。就是可以用一种区别于传统手段的,全新的、更加直观的过程来学习几何。
2.探索性学习的直观环境
过去我们讨论同一个圆内,对应一段弧的圆周角与圆心角的关系,必需要靠证明。现在可以:在圆O上任意作出C、D、E三点,得到圆周角CDE和圆心角COD;度量出它们的角度,就能看出是圆周角为圆心角的一半。然后在圆上移动E点,度量的值将随着E点的移动而变化,总能看到圆周角是圆心角的一半的关系。我们还可以移动D点,将看到所有的度量值不变化。其实这也是一个定理:“同弧上的圆周角相等”。当D点移动到与C、O在同一直线上时,就是证明圆周角有关定理的特殊位置。这说明利用“几何画板”对图形观察的过程中,也是可能启发我们得到进行逻辑证明的思路。圆O的大小和位置也是能够变化的,从而保证了动态观察和分析的普遍性。
上述过程可以是在教师的指导下,由学生独立或分组进行观察和分析,不必用教师讲学生听的传统教学方式进行。这就实现了又充分发挥教师的主导作用、又使学生成为学习的主体,是一个探索性学习的直观环境,是一种新型的教学模式。
其实“几何画板”提供的动态几何环境,不仅一般地帮助学生直观地去理解教师指定的图形或问题。而是能为学生提供了一个培养创造能力的实践园地。甚至可以让他们对一些“异想天开”设想的几何图形系统,实施动态的观察和分析研究。在圆O上任取一点E和圆外一点F作一线段,过线段中点G作垂线,若E点在圆上运动则垂线将跟随着运动,我们想知道垂线的运动规律。在这个设定的条件下,是可以讨论(推导)出某些结果的,但是对一般的学生(甚至对教师)来讲实在是要求太高了,在传统的学习环境下无论是观察和推导都很困难。
现在就不一样了,可以在“几何画板”上让E点在圆上移动,同时跟踪(使垂线现出轨迹)观察垂线的运动看看出现什么,然后再作进一步的分析和思考。分别让F点在圆外较远处、较近处、F点在圆内,三种不同位置在图上留下的垂线轨迹。看到这些直观图不难产生一些猜想:直线轨迹的包络线是二次曲线族(椭圆、双曲线、抛物线)?同学和教师可能有能力进一步的分析和讨论,发现这组图形中许多有趣的现象和规律。
学生还可以在平时解几何问题时,根据给定的已知条件,用“几何画板”作出草图然后去求解。由于在“几何画板”上作出的草图不但准确而且是“动态的”,学生可能在它的动态变化中的某些特殊位置,找到求解的思路。
3.培养创造性能力的实践园地
在使用“几何画板”给予学生探索性学习的环境以后,我们看到了培养他们创新精神和实践能力的奇特效果。其实“几何画板”提供的动态几何环境,不仅一般地帮助学生直观地去理解教师指定的图形或问题。而是能为学生提供了一个培养创造能力的实践园地。甚至可以让他们对一些“异想天开”设想的几何图形系统,实施动态的观察和分析研究。
初中几何课本中的一个习题,从圆O任意一条弦的中点E作两根直线与圆交得四个点,连接两条线段后得图形像一只蝴蝶,两线段与弦分别交于L、M两点则有:LE=EM,即蝴蝶两翼截得的线段相等,称为“蝴蝶定理”。
有这样一位同学,他不满足于一般的证明完成这个练习。首先他使用“几何画板”的”度量”功能,通过移动E点观察两线段长度确实相等,“看到了”定理是成立的。他加了一个同心圆,两圆与直线交得八个点,连接得一扩展的蝴蝶,其两翼与弦交得四点。他猜想左侧线段SE、TE与右侧线段EU、EV也应该有某种等式关系。他猜想可能有SE + TE = EU + EV 或SE * TE = EU * EV 这样的猜想并不稀奇,但在传统的学习环境下这些猜想很难证实或否定,最后只能不了了之掩灭了创造的火花。现在他利用“几何画板”度量了这些线段的长度,并进行了计算,计算的结果否定了他的两个猜想。这位同学没有停止探求,在他锲而不舍的努力下终于找到了它们之间的等式关系。利用“几何画板”的度量和计算,找到了这个有趣的关系式并完成了证明,他命名其为“广义蝴蝶定理”。此后他还对这个图形进行了更多的扩展和深入的分析研究,这是一个多么令人兴奋的成果啊!
中学生在学习的过程中的发现是否有价值并不重要,运用”智能教学工具平台培养了他的创新精神和创造性思维的能力,是很有意义的。其实,在目前已经知道的学生或学生与教师共同运用“几何画板”安排探索性教、学的过程中,一些创新的命题和成果,也有很多是有价值的。
我们正继续进行运用”几何画板”等”平台”,推广计算机辅助中学数学教学的实验,希望能够有所突破,找到有效的实现计算机辅助数学教学的途径和模式。并总结在数学教学中培养学生创新精神和实践能力的方法和经验。
几何画板在算法教学中的应用摘要摘要:中学数学教学存在一些传统教学手段难以解决的知识难点,如多次计算、重复作图等,这些问题利用算法和程序设计则较易解决。考虑到目前中学数......
《几何画板》在高中数学教学中的应用《几何画板》是观察和探索几何图形的内在关系,深入几何的精髓的实验平台《校本课程开发与实施有效性研究》课题组雷作明校本课程自编教材......
几何画板在初中数学教学中应用数学是一门严谨的科学,它具有严密的逻辑性和演绎性.“现代信息技术的广泛运用正在对数学课程内容、数学教学、数学学习等产生深刻的影响.教学中要......
《几何画板》在高中数学教学中的应用对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着重......
尝试《几何画板》在新课标教学中的运用江西省万载县万载中学曾才明新课标提倡教学内容与信息算技术相结合。我们可以借助现代教学手段进行教学实验,数学的活动不再局限于演绎......