混合动力汽车的研究探讨论文由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“混合动力汽车研究论文”。
毕业论文
论文题目:混合动力汽车的探索研究
班级:09211 学号:200921202 姓名:张浩
指导老师:朱忠伦
2012年5月10日
安徽交通职业技术学院 汽车与机械工程系 2012年5月20日
摘 要
现阶段混合动力汽车已经成为传统的内燃机汽车的最佳替代。它是21世纪初的最理想、最符合实际的绿色交通工具。本文介绍了目前几种新能源汽车,主要通过简单的分析来探讨混合动力汽车类型即混合动力汽车的三种基本驱动方式(串联式、并联式、混联式)及它们的优缺点和分析了混合动力汽车的关键技术,如蓄电池技术、机电技术、内燃机技术、能量管理技术、整车技术,以及国内外混合动力汽车的发展状况。
关键词:混合动力、驱动方式、环保节能、新能源、关键技术、开发路线
目 录
引言„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1
一、新能源汽车的类型„„„„„„„„„„„„„„„„„„„„„„„„1 1.混合动力汽车„„„„„„„„„„„„„„„„„„„„„„„„1 2.纯电动汽车„„„„„„„„„„„„„„„„„„„„„„„„„1 3.燃料电池汽车„„„„„„„„„„„„„„„„„„„„„„„„2 4.氢动力汽车„„„„„„„„„„„„„„„„„„„„„„„„„2 5.燃气汽车„„„„„„„„„„„„„„„„„„„„„„„„„„3 6.生物乙醇汽车„„„„„„„„„„„„„„„„„„„„„„„„3 7.氮气汽车„„„„„„„„„„„„„„„„„„„„„„„„„„3
二 混合动力汽车类型„„„„„„„„„„„„„„„„„„„„„„„„3 1.串联式混合动力系统„„„„„„„„„„„„„„„„„„„„„3 2.并联模式混合动力系统„„„„„„„„„„„„„„„„„„„„5 3.混联式混合动力系统„„„„„„„„„„„„„„„„„„„„„6
三、混合动力汽车开发的关键技术„„„„„„„„„„„„„„„„„„„8 1.蓄电池技术„„„„„„„„„„„„„„„„„„„„„„„„„8 2.电动机技术„„„„„„„„„„„„„„„„„„„„„„„„„9 3内燃机技术„„„„„„„„„„„„„„„„„„„„„„„„„10 4.能量管理策略„„„„„„„„„„„„„„„„„„„„„„„„10 5.再生制动控制技术„„„„„„„„„„„„„„„„„„„„„„11 6.整车技术„„„„„„„„„„„„„„„„„„„„„„„„„„11
四、混合动力汽车的开发技术路线„„„„„„„„„„„„„„„„„„11
五、发展与展望„„„„„„„„„„„„„„„„„„„„„„„„„„12
引 言
能源与环保问题日益突出,因此开发新型的节能环保汽车迫在眉睫。在这种形式下,运生了各种新能源汽车应运而生,如混合动力汽车、燃料电池汽车、氢动力汽车、燃气这车、生物乙醇汽车和氮气汽车等。虽然各种方案诸多,但是应用于实际情况就会有很多难解决的问题矛盾,目前来讲混合动力具备较高的优势。
一、新能源汽车的类型
新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。新能源汽车是指除汽油、柴油发动机之外所有其它能源汽车。包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等。《新能源汽车生产企业及产品准入管理规则》已于2009年7月1日正式实施,《规则》强调说明:新能源 新能源汽车
汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括混合动力汽车(HEV)、纯电动汽车(BEV,包括太阳能汽车)、燃料电池电动汽车(FCEV)、氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等各类别产品。
1.合混动力汽车
混合动力是指那些采用传统燃料的,同时配以电动机/发动机来改善低速动力输出和燃油消耗的车型。按照燃料种类的不同,主要又可以分为汽油混合动力和柴油混合动力两种。目前国内市场上,混合动力车辆的主流都是汽油混合动力,而国际市场上柴油混合动力车型发展也很快。
混合动力汽车的优点是:
1、采用混合动力后可按平均需用的功率来确定内燃机的最大功率,此时处于油耗低、污染少的最优工况下工作。需要大功率内燃机功率不足时,由电池来补充;负荷少时,富余的功率可发电给电池充电,由于内燃机可持续工作,电池又可以不断得到充电,故其行程和普通汽车一样。
2、因为有了电池,可以十分方便地回收制动时、下坡时、怠速时的能量。
3、在繁华市区,可关停内燃机,由电池单独驱动,实现“零”排放。
4、有了内燃机可以十分方便地解决耗能大的空调、取暖、除霜等纯电动汽车遇到的难题。
5、可以利用现有的加油站加油,不必再投资。
6、可让电池保持在良好的工作状态,不发生过充、过放,延长其使用寿命,降低成本。
2.纯电动汽车
电动汽车顾名思义就是主要采用电力驱动的汽车,大部分车辆直接采用电机驱动,有一部分车辆把电动机装在发动机舱内,也有一部分直接以车轮作为四台电动机的转子,其难点在于电力储存技术。
纯电动汽车本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的城市,对人类伤害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物较容易,也已有了相关技术。由于电力可以从多种一次能源获得,如煤、核能、水力、风力、光、热等,解除人们对石油资源日见枯竭的担心。电动汽车还可以充分利用晚间用电低谷时富余的电力充电,使发电设备日夜都能充分利用,大大提高其经济效益。有关研究表明,同样的原油经过粗炼,送至电厂发电,经充入电池,再由电池驱动汽车,其能量利用效率比经过精炼变为汽油,再经汽油机驱动汽车高,因此有利于节约能源和减少二氧化碳的排量,正是这些优点,使电动汽车的研究和应用成为汽车工业的一个“热点”。有专家认为,对于电动车而言,目前最大的障碍就是基础设施建设以及价格影响了产业化的进程,与混合动力相比,电动车更需要基础设施的配套,而这不是一家企业能解决的,需要各企业联合起来与当地政府部门一起建设,才会有大规模推广的机会。优点:技术相对简单成熟,只要有电力供应的地方都能够充电。缺点: 目前蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵,至于使用成本,有些试用结果比汽车贵,有些结果仅为汽车的1/3,这主要取决于电池的寿命及当地的油、电价格。
3.燃料电池汽车
燃料电池汽车是指以氢气、甲醇等为燃料,通过化学反应产生电流,依靠电机驱动的汽车。其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能或的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。单个的燃料电池必须结合成燃料电池组,以便获得必需的动力,满足车辆使用的要求。
近几年来,燃料电池技术已经取得了重大的进展。世界著名汽车制造厂,如戴姆勒-克莱斯勒、福特、丰田和通用汽车公司已经宣布,计划在2004年以前将燃料电池汽车投向市场。目前,燃料电池轿车的样车正在进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。在开发燃料电池汽车中仍然存在着技术性挑战,除了燃料电池汽车目前成本高、寿命短、耐久性和可靠性差等主要难点外,配套设施的缺乏,才是燃料电池车在技术进步之外,与成熟的内燃机产业体系最大的差距所在。例如如加氢站,维修、配件供应等,基础设施配套建设匮乏让燃料电池车离大众仍然很远,目前各国的计划,都是由点到线、到小区域示范和试用,再逐步扩大、延伸和推广,这需要几十年的时间。4.氢动力汽车
氢动力汽车是一种真正实现零排放的交通工具,排放出的是纯净水,其具有无污染,零排放,储量丰富等优势,因此,氢动力汽车是传统汽车最理想的替代方案。
几乎所有的世界汽车巨头都在研制新能源汽车。电曾经被认为是汽车的未来动力,但蓄电池漫长的充电时间和重量使得人们渐渐对它兴味索然。而目前(指2009年)的电与汽油合用的混合动力车只能暂时性地缓解能源危机,只能减少但无法摆脱对石油的依赖。这个时候,氢动力燃料电池的出现,犹如再造了一艘诺亚方舟,让人们从危机中看到无限希望。以氢气为汽车燃料这种说法刚出来时吓人一跳,但事实上是有根据的。氢具有很高的能量密度,释放的能量足以使汽车发动机运转,而且氢与氧气在燃料电池中发生化学反应只生成水,没有污染。因此,许多科学家预言,以氢为能源的燃料电池是21世纪汽车的核心技术,它对汽车工业的革命性意义,相当于微处理器对计算机业那样重要。优点:排放物是纯水,行驶时不产生任何污染物。缺点:氢燃料电池成本过高,而且氢燃料的存储和运输按照目前的技术条件来说非常困难,因为氢分子非常小,极易透过储藏装置的外壳逃逸。另外最致命的问题,氢气的提取需要通过电解水或者利用天然气,如此一来同样需要消耗大量能源,除非使用核电来提取,否则无法从根本上降低二氧化碳排放。
5.燃气汽车
燃气汽车是指用压缩天然气(CNG)、液化石油气(LPG)和液化天然气(LNG)作为燃料的汽车。近年来,世界上各国政府都积极寻求解决这一难题,开始纷纷调整汽车燃料结构。燃气汽车由于其排放性能好,可调正汽车燃料结构,运行成本低、技术成熟、安全可靠,所以被世界各国公认为当前最理想的替代燃料汽车,但是燃气终归是不可再生能源,与石油一样,所以这并不能解决能源问题,而且排放问题并不能解决。所以这使我们看到了燃气汽车的末路„„
6.生物乙醇汽车
乙醇俗称酒精,通俗些说,使用乙醇为燃料的汽车,也可叫酒精汽车。用乙醇代替石油燃料的活动历史已经很长,无论是从生产上和应用上的技术都已经很成熟,近来由于石油资源紧张,汽车能源多元化趋向加剧,乙醇汽车又提到议事日程。
7.氮气汽车
氮气汽车是利用低温氮作为能力的载体从外界环境中吸取热量,提高自身的温度增加内能,将其导入特殊的氮气机种,使其在机器内膨胀做工,将内能转换成机械能,从而驱动汽车。但是,气马达需要很多高压氮气,汽车由于体积的限制,不能给汽车做很大的氮气储罐。工厂里停电时应急用的气动马达都配有上百立方米的高压氮气储罐。高压氮气储罐属于压力容器,不安全。虽然没有污染,但是使用费用昂贵,所以没有使用氮气的汽车。
二、混合动力汽车的类型
目前过内外开发与研究的主要有三种类型:串联式混合动力电动汽车(SHEV)、并联式混合动力电动汽车(PHEV)和混联式混合动力电动汽车(CHEV)。
1.串联式混合动力系统
串联式混合动力系统利用发动机和发电机提供电能 ,电动机是唯一的驱动源。其动力传动系的结构组成如图2-1所示。由于发动机与驱动车轮之间没有直接的机械连接 ,发动机不受汽车行驶工况影响 ,始终保持在最佳工作区稳定运行 ,所以特别适用于在市区低速运行的工况。汽车在起步和低速时还可以关闭发动机 ,只利用电池提供驱动功率 ,达到零排放要求。
串联式混合动力汽车特点是整车布置的自由度较大,发动机始终保持在最佳工作状态,汽车具有良好的燃油经济性和排放指标;电力驱动是唯一的驱动模式,控制技术简单;驱动模式决定了发动机、发电机和电动机的功率应接近或等于汽车所需的最大驱动功率,故三大动力总成的功率、外形和质量都较大,整车价格高;电池数量较多,串联布置在中、小型汽车上不容易实现;能量损失较大,发动机输出能量利用率低。
发动机发电机机械连接电气连接电池组电动机
图2-1串联式动力传动系结构图
我们所熟悉的美国通用汽车公司旗下的雪佛兰的“沃蓝达”就是采用该种模式,这款配备了通用汽车最新一代动力推进系统——E-flex系统(“E-flex”系统是通用汽车下一代电动推进系统的名称。
其中的“E”表示“电”,电力是E-Flex车型的唯一驱动方式。而“Flex”代表的是“灵活”,表示用以驱动汽车的电力可以从各种途径取得。)的雪佛兰Volt概念车,让我们可以从汽油、乙醇、生物柴油或氢气中获得电能,这使得我们可以定制推进系统,以满足特殊的要求和特定市场的基础设施。例如在巴西,可以使用 100% 的乙醇作为发动机电动机组和电池的动力,上海的消费者或许会利用太阳获取氢,然后从燃料电池中得到电能,而瑞典的消费者可能会从木材中获取生物柴油。这些可替代能源在E-flex系统架构上都可以得到应用。
雪佛兰Volt配备的E-Flex系统架构采用了通用汽车最新的第五代燃料电池推进技术和锂电池,其体积只有上一代的一半,但却能提供与其相当的动力和性能。在无需燃油、零污染
排放的电力驱动下,最大续驶里程可达483公里,且真正实现零排放。相比较于两年前推出的雪佛兰Sequel概念车(配备的是第四代燃料电池系统),雪佛兰Volt在保持同样续驶能力的前提下,只需配备4公斤的氢,仅为Sequel需要配备的氢重量的一半。
2.并联式混合动力系统
并联式动力混合系统中有发动机和电动机两套驱动系统 ,发动机和电机分别驱动车轮。它的结构形式更像是附加了一个电动机驱动系统的普通内燃机汽车。其动力传动系的结构组成如图2-2。由于发动机与驱动车轮之间机械连接 ,没有串联将机械能转换为电能的发电机 ,因此提高了能量转化效率。并联系统结构紧凑 ,比较适用于轿车。并联混合动力系统的传动系统较为复杂,工作模式较多,控制系统复杂,实现形式多样化。
当汽车低速、小功率行驶时,控制器控制电池为电动机供电,实现零排放;汽车以较大功率行驶时,通过调节发动机输出转矩调节发动机的功率;汽车刹车减速,电动机相当于发电机为电池组充电;电动汽车加速、高速行驶时,电池组为电动机供电,发动机与电动机协调驱动汽车。
发动机机械连接电气连接电动机变速器电池组
图2-2并联式动力传动系结构图
并联式混合动力汽车的特点是系统能量的利用率相对较高,这使得并联式的燃油经济性一般比串联的要高;发动机运行直接受到道路行驶工况影响,运行状态较为复杂,因而并联驱动排放性相对串联驱动要差,但可以在较多不良的行驶工况下运行;发动机与电动机都是动力总成,两者可以互相耦合满足汽车功率的要求,系统可采用小功率的发动机与电动机,使得整车动力总成尺寸小,质量也较轻;但发动机和机械驱动系统的机械连接使得机械装置较复杂,增加了整车布置的难度。当汽车在市区行驶时,可以关闭发动机,由电池组为电动机供电提供汽车的驱动功率,实现零排放。
在电影《谍中谍4》里,阿汤哥驾驶全新宝马i8混合动力双门超级跑车给人留下了深刻的印象。
这款i8 Spyder概念车正是用了并联模式。日前,有海外媒体在寒冷地带拍摄到了全新宝马i8的最新测试谍照。这意味着距离全新量产宝马i8的上市时间已经越来越近。从最新曝光的测试谍照上看,全新宝马i8取消了原有概念车上的结构性前风挡玻璃,而保留了飞扶壁式尾部设计。
i8搭载了高性能的混合动力系统,突出了车辆超强的动力性能。全新宝马i8所使用的插入式混合动力系统由两台电动机和一台涡轮增压汽油发动机构成,最高输出功率345马力,最大扭矩800牛米。其中,1.5升排量三缸汽油发动机使用了燃油直喷和可变进气涡轮增压技术,将动力输出至车辆的后轮。
3.混联式混合动力系统
混联式结构综合了串联式和并联式的特点,其动力传动系的结构组成如图2-3。混联式结构一般以行星齿轮作为动力复合装置的基本构架,混联式混合动力汽车配备的发动机和电动机的功率可以比较小,发动机也比较容易控制在高效区稳定工作,控制策略比较灵活。缺点是结构复杂,成本较高,与其复杂的结构相应,其控制系统也较为复杂。
功率分流器发动机电动机发电机机械连接电气连接图2-3混联式动力传动系结构图
逆变器电池组该系统适合各种行驶条件,具有良好的燃油经济性和排放性能,既可以外接充电,也可自充电,续驶里程相比内燃机汽车远,是很理想的混合电动方案。整车布置难度较高,电池数量较少,但增加了发电机。控制技术含量高,整车价格高。
在这方面,日本丰田走在了前面,其普锐斯、凯美瑞混合动力版及雷克萨斯一系列混合动力车都是这种模式。
以普锐斯为例,PRIUS普锐斯使用的THS II就是混联模式,有效地组合了串联式和并联式,使两者的优势发挥到极致。
发动机的动力由动力分割机构分割,一部分直接驱动车轮,另一部分被用于发电,其使用比例可自由控制。由所产生的电能驱动电动机,电动机的使用比例比并联式更大。THS优先考虑降低环境负荷,TOYOTA在THS成果的基础之上,以“Hybrid Synergy Drive”为理念,使电动机输出功率增长了1.5倍,同时实现了电源系统的高电压化,控制系统也得到大幅改进。由此发挥电动机和发动机工效的相辅相成之协同效果,开发出了降低环境负荷与动力性能两者兼备的新一代TOYOTA油电混合动力系统“THS II”。
三、混合动力汽车开发的关键技术
混合动力汽车是一个复杂的系统工程,涉及的关键技术有蓄电池技术、电机技术、内燃机技术、能量管理技术、整车技术和现代控制理论等。[2-4]
1.蓄电池技术
作为混合动力汽车的动力源之一,电池性能的高低极大的决定了混合动力汽车技术的先进性。混合动力汽车在工作中电池处于非周期性的充放电循环中,对电池的充放电速率和效率很高。研究与开发高性能充放电、低成本、寿命长的电池,是发展混合动力电动汽车的关键问题之一。
目前,除铅酸电池外,正在研究与开发的电池有镍氢蓄电池、铁镍蓄电池、银锌蓄电池、锂蓄电池、燃料蓄电池、太阳能蓄电池。铅酸电池在国内技术成熟,成本低廉,跟随负荷输出特性好,比较适合我国发展的需要。但其快速充放电困难,使用寿命不够理想、质量大等方面仍需改进,如可以通过增加电池片数,改进包装方法、使用高效添加剂,开发质量轻便的隔板材料等方法。在国外,各种镍电池飞速进展,这类镍电池储能较大、过充电和过放电性能优良、能带电充电并可以实现快速充电、使用寿命长。突出优点是全密封,免维护。目前,国外大多采用这些高性能的电池提高汽车的续驶里程和性能。但在价格昂贵,研发降低其成本是其推广的关键。
银锌蓄电池的电池能量高,质量轻,温度特性稳定,但价格高,寿命短;锂蓄电池的比能量大,比功率高,充电放电效率高,可以快速充电,功率输出密度大,但锂的制取较困难,管理和使用较复杂,要有严格的安全措施,价格也高。它是未来电池研发的一个方向。
在新型高性能电池的开发方面,燃料蓄电池转换效率高,容量大,比功率和毕能量高。具有广阔的发展前景。已经成为各国研究的焦点。最常见的燃料蓄电池有:碱性燃料蓄电池、磷酸燃料蓄电池、熔融碳酸盐燃料蓄电池、固体氧化物燃料蓄电池、质子交换膜燃料蓄电池等,而以质子交换膜燃料蓄电池应用于电动汽车上最为可能。在绿色环保方面,太阳能蓄电池最为理想。它直接将太阳能转换为电能,无污染,零排放。太阳能电池主要有三种结构:非晶硅,单晶硅,多晶硅。太阳能蓄电池在光电转换率,降低成本方面还需要进一步突破。目前有少数汽车公司把太阳辐射的能量收集起来,并转换成电能,以此为动力的汽车就是太阳能汽车,它是最洁净无污染的交通工具。太阳辐射到地球表面的能量转换成电能,效率可达30%。目前世界上最先进的技术已经能够达35%左右的转换效率。8平米大小的太阳能板能提供一辆小型汽车所需的电力。经测算,一辆太阳能轿车一年可省油500L.今后汽车动力的发展方向最有可能是使用太阳能、燃油、电力等多种能源的混合动力车。[5] 2.电动机技术
混合动力电动汽车上使用的电动机有感应电动机、永磁无刷电动机等。研究开发体积小、重量轻、工作可靠、动态响应好的电机,对混合动力电动汽车进一步提高动力性和经济性极为重要。
感应电动(交流异步电机)机以鼠笼式感应电动机应用最广,感应电动机的功率容量覆盖面很宽广,转速最高可以达到1.2万r/min,可以采用空气冷却或液体冷却方式,冷却自由度高,对环境的适应性好,并且能够实现再生反馈制动。具有结构简单、维修方便、运行可靠、价格便宜、经久耐用等优点,具有较好的稳态和动态特性。为了解决感应电动机能够在低速下输出稳定的大转矩。解决感应电机的低速问题的方法主要有:采用滑模方法实现解耦控制,解决低速稳定性问题的;设计专门的低速混合磁链模型,调整定子电阻,解决了低速下恒定大转矩输出的问题。此外,噪音和开关损耗问题也是困扰交流异步电机在电动汽车上应用的问题之一。当感应电机工作在高转速区时,由于电机电感相对较小,容易产生很大的峰值电流,从而引起大量的噪声和开关损耗。因此,需要对功率开关器件的开关频率进行控制,抑止噪声和能量损耗。我过在交流异步电机的设计与制造方面有比较大的优势,所设计的交流异步计电机性能好、工艺先进,可靠性高,已经向包括美国在内等国家出口。
随着永磁无刷电动机的性能不断提高,价格逐渐下降,永磁无刷电动机的应用前景将会越来越广泛。主要有两种:永磁同步电动机、永磁无刷直流电机。永磁同步电动机在高速转动时有良好的可靠性,运转平稳,工作时电流损耗小、弱磁控制也容易实现,工作噪声低。所以,它非常适用于混合动力汽车驱动系统。永磁同步电机的基本控制策略是,在低速时采用转子磁链定向的矢量控制,而高速时用弱磁控制,以使电动机基本保持恒定功率,满足电动汽车负载要求。和永磁同步电动机相比,永磁无刷直流电动机的效率高,起动力矩大,过载能力强,高速操作性能好,结构简单牢固,免维护或少维护,体积小质量轻,特别适合混合动力轿车的开发。缺点是噪声较大,可以考虑噪声加消除装置。永磁无刷直流电机的基本控制策略是,在低速时采用电流斩波控制,而高速时采用弱磁控制,增加电流的去磁分量。方波无刷电动机的弱磁控制通过调节开通角来达到弱磁效果。
3.内燃机技术
内燃机有汽油机和柴油机。先进内燃机技术要求内燃机体积小、重量轻。由于采用了各种先进控制技术,汽油机的排放已降到未加控制前的1%以下。缸内直喷方式有望取代进气道喷射成为汽油喷射主要形式,代表汽油机的发展方向。汽油机存在的问题是缸内积碳、高压油泵的润滑和密封性、喷油器堵塞。因此有效而可靠地实现部分负荷下缸内混合气的分层与稀薄燃烧,是缸内直喷式汽油机的关键。柴油机的燃油经济性优于汽油,如不用催化剂,柴油机的排放性能要优于汽油机。但柴油机的弱点是氮氧化物、微粒和噪声较难控制。已采用的控制措施有:气门、增压中冷、电控高压喷油、滚流/螺旋气道、可变涡流、强紊流燃烧室等。电控共轨式柴油喷射系统是最有发展前途的喷油系统,可以自由控制喷油量、喷油压力、喷油速率和喷油定时。未来柴油机将采用更加轻质材料和超高压喷油、高增压、智能EGR控制、在燃料方面,甲醇、乙醇、CNG、LPG、DME、H2等代用燃料在内燃机上的开发应用会进一步发展,但由于社会基础设施等因素限制,短期内进展不会很快。[6]参考文献 [7]所给出的内燃机的重量已达到临界状态, 它采用内燃机起动机/发电机一体化(ISA/ ISG)技术 , 广泛使用铝镁合金、塑料作零件,采用薄汽缸体 , 连杆为细的铸钢件加渗碳等 , 整个发动机降低重量达 30 %。丰田生产Prius的的发动机技术达到当代的最高技术水平 , 它的尾气排放污染物降低到同类轿车排放污染物的 10 %左右,在车上的应用效果显示,加上再生制动能量回收,整车效率提高近一倍,整车CO2 排放降低一半。
4.能量管理策略
如果说驱动系统是混合动力汽车的心脏,则能量管理系统无疑就是电动车的大脑。能量管理系统协调混合动力汽车发动机、电动机之间的动力分配,电池电荷状态控制等。它包括储能单元,能量管理单元,混合动力系统中央控制单元。能量管理策略作为混合动力汽车控制系统的关键技术,可以大致分为基于规则的能量管理策略、基于智能控制的能量管理策略和基于优化算法的能量管理策略三大类。[8]
基于规则的能量管理策略的基本思想主要是依据部件的稳态效率 Map 图,确定发动机和电动机之间的能量流分配。该控制方法简单有效,实用性强,并且是制定许多高级能量控制策略的基础。基于规则的能量管理策略主要根据策略设计人员的工程经验及稳态的效率 Map 制定,并没有考虑动态变化,故不能达到系统性能最优。
智能型控制策略主要是通过应用模糊逻辑、神经网络及遗传算法等智能控制技术来决策混合动力系统的工作模式和功率分配。智能控制的基本出发点是模仿人的智能,根据被控系统动态过程中定性和定量的信息,进行综合集成、推理决策,以实现对复杂非线性不确定系统的有效控制。智能能量控制策略具有很强的鲁棒性和很好的自学习能力,非常适合应用于非线性控制系统,因此在混合动力汽车能量管理策略研究过程中得到越来越广泛的应用。
与车辆实际运行时不同,全局优化算法是针对某个既定的驾驶循环开展的。因此,车辆在不同时刻的行驶速度由驾驶循环给定,驱动轮处的驱动力可以根据车辆纵向动力学方程计算得出。使用全局优化能量控制策略可以实现真正意义上的最优化,但全局优化算法的计算工作量往往较大,一般只能够得到数值解,优化结果不能直接应用到实际控制当中。不过,通过全局优化得到的最优控制,可以获得优化控制的宏观规律,为制定合理的实时能量管理策略提供宏观控制规则。同时,最优控制还可以作为其它控制方法的参考和对比目标。
能量管理系统要求开发适合的混合动力汽车动态数学模型以实现更加准确的控制、开发以微处理器为核心的电子控制单元。未来的研究方向可以将现代控制理论和优化方法融入能量管理优化方法中去,进而获取混合动力汽车实时性要求的高品质能量管理策略,同时总结出一套较为完善的混合动力汽车能量管理策略的优化设计方法。例如混合动力电动汽车用电池组要受电池放电深度、充放电电流的大小及具体的汽车行驶工况等诸多因素的影响,需要建立一个符合混合动力电动汽车电池实际使用状况的能量管理模型。以便建立一个符合电池实际使用环境的电池能量管理系统,并为载荷均衡控制装置提供可靠的控制参数。开发自动化电子原件使电池维持工作在一定稳定充放电范围内,并提供人机交换界面、电池性能、剩余能量显示等等。
5.再生制动控制技术
再生制动可以节约能源、提高续驶里程 ,具有显著的经济价值和社会效益.同时 ,再生制动还可以减少刹车片的磨损 ,降低车辆故障率及使用成本。该系统多数由超级电容或飞轮及其控制器组成 ,而利用超级电容或飞轮吸收再生制动能量 ,具有非常突出的优点.当车辆制动时 ,电机工作于发电机工况 ,将一部分动能或重力势能转化为电能储存在超级电容或飞轮中 ,由于超级电容或飞轮的功率密度大 ,因此可以更快速、高效地吸收电机回馈能量.在车辆起动和加速时 ,利用双向 DC/ DC将存储的能量释放出来 ,协助电池向电机供电 ,不但增加了混合动力汽车一次充电的行驶里程 ,而且避免了蓄电池的大电流放电 ,达到了节省能源、降低刹车片磨损和提高蓄电池寿命的目的。[9]
6.整车技术
混合动力汽车由于车身质量、空间和能源的矛盾,因此在设计时必须考虑采用轻质、廉价材料以减轻整车的质量和价格。如复合材料铝合金金属蜂窝材料及其加工技术、新型混合动力车辆造型与结构的整体设计CAD技术等。在充分利用空间的情况下,尽可能增大车厢内部乘员空间,最大限度地降低空气阻力系数和滚动阻力系数,以求减小行驶阻力,利用机电一体化匹配设计,求得整车结构参数达到最优化。如何把先进的控制技术与电力电子技术应用到混合动力汽车研发中,减少控制系统动力系统所占的空间是整车技术的关键。
四、混合动力汽车的开发技术路线
1、了解与分析国内外有关混合动力汽车的结构特点、工作原理、安装方式、控制策略和特性评价的先进方法。
2、根据混合动力汽车行驶的最大阻力力矩,计算出驱动电机性能参数,完成驱动发动机、电动机、电池组的选型。
3、建立混合动力汽车各模块的数学模型,包括电池组、发动机、电动机、能量管理系统模型。
4、确定速度、力矩、温度、电流及电压等传感器的性能参数,选择或设计加工出性能好、体积小、易于安装的车速及力矩传感器。
5、开发以微处理器为核心的电子控制单元来实现智能化的能量管理系统。根据能量管理系统模型,能对整车系统电能和储能单元实时检测、显示、充放电管理、行驶里程统计与预测、故障诊断与报警、储能元件寿命预测等综合管理。
6、分析混合动力汽车系统性能的影响因素和特点,分析各总成的结构参数和布置方式对车辆性能的影响,结合相应的道路及台架实验,进行混合动力汽车的 车身与底盘布置。电动汽车的车身和底盘技术应与电动汽车同步开
7、将各种传感器与电动机制成一个整体,研究合理的安装位置。
8、对所研制的电动汽车,进行道路和台架试验,根据试验数据来修正有关设计、控制参数,以满足所提出的电动汽车的性能指标。[10]为技术路线流程图如4-1所示。
由性能指标、模拟分析及试验数据建模电池组选取、电机发动机选型各种传感器选取控制、能量管理与分配单元设计悬架、车架及车身设计集成设计加工制造样车、装车实验
图4-1混合动力汽车的开发技术路线流程图
五、发展与展望
1、从国内的发展和当前技术来看,动力系统和控制系统所占的空间较大,实现发动机和电动机一体化设计与控制;研究开发体积小,能量密度高、价格低的蓄电池应该是今后的主要研究方向。
2、大部分都普遍存在着十分严重的交通问题和汽车尾气排放污染问题。作为一种小型、中速和短途的日常交通工具, 混合动力汽车有着独特的市场,政府应鼓励电动汽车按市场机制开发。鉴于我国目前具有巨大潜在的多元化市场以及良好的工业基础,在混合动力汽车发展方面,中国将起到带头作用。
参考文献
1.任勇,秦大同,杨亚联等.混合动力汽车的研发的研发实践[J].重庆大学学报,2004,27(4):27-28.2.丁军,王喜瑜,周希德.我国电动汽车发展的关键技术分析[J].汽车科技,1997,3:47-51.3.汤双清,廖道训,吴正佳.电动汽车的核心技术及发展展望[J].机械科学与技术,2003,22(2)190-192 4.张振华, 盖玉先.混合动力城市客车动力系统设计与仿真[D].哈尔滨:哈尔滨工业大学, 2008,6:6-7.5.曾斌.21世纪的汽车[J].中国机电工业,2002,3:38-39.6.刘联国.汽车研究与发展[J].汽车研究与开发,2001,1:8-10.7.何洪文,祝嘉光,李剑.混合动力电动汽车技术发展与现状[J].车辆动力与技术,2004,52-56 8.张博,李君.可外接充电混合动力汽车能量管理策略研究[D].吉林大学,2009.9.曹秉刚,张传伟,白志峰等电动汽车技术进展和发展趋势[J].西安交通大学学报,2004,38(1)4-6 10.钱立军,赵韩,高立新.电动汽车开发的关键技术及技术路线[J].合肥工业大学学报(自然科学版), 2002 , 25(1):15-18.11.品车网宝马i8资讯http://www.daodoc.com/ 13.车型图片下载于易车网http://news.bitauto.com
混合动力汽车的探索研究专业:汽车制造与装配学生:***,指导老师:***【摘 要】混合动力汽车燃油经济性好,符合节能环保的理念然而因生产及技术成本较高,导致其销售价格偏高。本文将......
混合动力工程机械研究现状论文1混合动力工程机械研究现状在汽车行业混合动力技术已经得到了广泛的推广和使用,为工程机械的节能问题提供了一条新的道路,但是汽车的运作方式和......
刀豆文库小编为你整合推荐3篇混合动力工程机械研究现状论文,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
1混合动力工程机械研究现状在汽车行业混合动力技术已经得到了广泛的推广和使用,为工程机械的节能问题提供了一条新的道路,但是汽车的运作方式和工程机械有明显的差别,工程机械......
汽车混合动力技术摘要:在最近的一个时期,汽油和柴油仍是汽车的主要能量来源,新能源汽车近期需要解决的方案是传统内燃机新技术和替代燃烧汽车,中期方案是混合动力汽车降低油耗和......