锂离子电池论文:磷酸亚铁锂硬碳锂离子电池的工艺及电化学性能研究由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“磷酸铁锂电池论文”。
锂离子电池论文:磷酸亚铁锂/硬碳锂离子电池的工艺及电化学性能研究
【中文摘要】自从锂离子电池被成功研制并商业化以来,锂离子电池以其循环寿命长、工作电压高、安全性好、无记忆效应等特点越来越受到人们的青睐和重视。然而,锂离子电池电化学性能的好坏与其所使用的正负极材料、导电剂、粘结剂、电解液、隔膜等有着密切的关系。磷酸亚铁锂(LiFePO4)因其具有原料丰富、比容量高、结构稳定、安全性好等优点成为了一种比较有潜力的锂离子电池正极材料。同时,可以作为锂离子电池负极材料的硬碳(hard carbon, HC),由于其无规则的排序具有较高的容量、优良的循环性能和较低的造价等特性,使得人们对其产生了极大的兴趣。本文将LiFePO4与硬碳组合成LiFePO4/HC电池,从正极材料所用的导电剂和粘结剂等工艺方面对LiFePO4/Li半电池及LiFePO4/HC全电池的电化学性能影响进行研究,并将LiFePO4/HC电池和LiFePO4/石墨(AGP-3)电池的电化学性能进行比较,得出如下结论:1.对于LiFePO4/Li半电池,使用Super P Li做导电剂时,电池的电阻相对更小,在0.2 C和1 C的放电倍率下,电池的放电平台都比使用乙炔黑做导电剂时更为平稳,且比容量更大。在1 C放电倍率下经过150个循环后,电池容量的保持率要相对更稳定。循环伏安测试表明所使用的LiFePO4材料本身的循环可逆性较好,这与LiFePO4颗粒间存在的碳纳米管提高了其导电性可能有很大的关系。2.对于LiFePO4/HC全电池,同样我们得出使用Super P Li
做导电剂时,电池的电阻相对更小且比容量更大。倍率性能测试显示,使用Super P Li做导电剂时电池的倍率性能更加优越,但是,可能由于所使用的粘结剂PVDF粘结性能不够好,使得电池在10 C的放电倍率下比容量很低。同时,与LiFePO4/Li半电池相比,全电池的电阻值要小,放电曲线没有出现平台且在1 C放电倍率下循环150次后电池的容量保持率要高。3.使用水性粘结剂SBR和油性粘结剂PVDF制得LiFePO4极片,将其与金属锂片组合成LiFePO4/Li电池。在0.2 C的放电倍率下,使用两种粘结剂体系电池的放电平台(约3.38 V)都较为平稳,放电比容量基本相等,其中水性粘结剂SBR体系其比容量稍低一些,当电池放电倍率为1 C时,使用水性粘结剂SBR时,电池的首次和第2次放电比容量都比使用油性粘结剂PVDF时要高。从交流阻抗和循环寿命测试我们得知,使用水性粘结剂时电池的阻抗值更小,其Rct值为89.68Ω,在1 C的放电倍率下,经过150个循环后,电池容量的保持率要相对更稳定,其保持率为65%。4.使用两种粘结剂后,LiFePO4/HC电池在0.2 C的放电倍率下,油性粘结剂体系的LiFePO4/HC电池的首次放电比容量要高于水性粘结剂体系,但随着循环的进行油性粘结剂体系的放电比容量会呈下降趋势,而水性粘结剂体系则会呈现一定的上升趋势。当电池在1 C的放电倍率下进行放电时,与半电池测试结果相同,水性粘结剂体系电池的放电比容量要高于油性粘结剂体系且容量保持率要好,保持率为97.9%。倍率性能测试显示,水性粘结剂体系电池的大倍率性能要好于油性粘结剂体系。此外,使用水性粘结剂时电池的阻抗值更小,其Rct值为5.08Ω,且无
论哪种粘结剂全电池的阻抗值都要比半电池小。5.使用硬碳做负极时电池的倍率性能要好,电池在1 C的充放电倍率下进行充放电时,LiFePO4/AGP-3和LiFePO4/HC电池的放电比容量值分别为0.2 C倍率下的84.3%和91.0%,在1 C和2 C的放电倍率下,LiFePO4/AGP-3电池的放电比容量要稍高于LiFePO4/HC电池,但是当电池的放电倍率为5 C和10 C时,LiFePO4/HC电池的放电比容量值却要高于LiFePO4/AGP-3电池。6.电池使用硬碳和石墨材料做负极时阻抗值相差不大,LiFePO4/HC电池的Rct值稍小一些。1 C的放电倍率下,LiFePO4/HC电池的循环寿命要比LiFePO4/AGP-3电池长。此外,与正负极材料的半电池相比,在10 C的放电倍率下,LiFePO4/HC全电池的循环寿命要远远长于半电池,经过2450个循环后电池的放电比容量才降为首次的60%。
【英文摘要】Since lithium ion batteries have been succefully investigated and commercialized, they attract people’s attention for their properties such as long cycling life, high voltage, security, no memory effort.However, the electrochemical performance of lithium ion battery is affinitive with its cathode and anode materials, conductive agent, binder, electrolyte, separator et al.Lithium iron phosphate(LiFePO4)has been considered as a promising lithium ion battery because of its rich raw materials, high capacity, stable structure, safety et al.As well, hard carbon(HC)with
an inordinance structure which can be used for an anode material of lithium ion battery has been attracted people’s interest for its high capacity, excellent cycling performance and low cost et al.In this thesis, we have developed a lithium ion battery-LiFePO4/HC using LiFePO4 as cathode and hard carbon as anode to study the conductive agent and binder influence of the electrochemical properties of LiFePO4/Li half cell and LiFePO4/HC full cell.In addition, we compared the electrochemical performance of LiFePO4/HC battery and LiFePO4/graphite(AGP-3).Through the experiments, we got the following conclusions:1.For LiFePO4/Li half cell, using Super P Li as conductive agent, the resistance of battery was smaller.At 0.2 C or 1 C rate, the discharge voltage plateau of the cell using Super P Li as the conductive agent was more stable than that of using acetylene black.After 150 cycles at 1 C rate, the capacity retention of the cell using Super P Li as conductive agent was higher.Cyclic voltammetry indicated that the LiFePO4 material has a good cyclic reversibility, which may be caused by the good conductivity results from the carbon fibers among LiFePO4 particles.2.For LiFePO4/HC full cell, we also got the conclusion that using Super P Li as conductive agent, the resistance of the cell was smaller and the capacity
of it was higher.Rate performance test has shown that the cell using Super P Li as conductive had better rate performance, however, the discharge capacity of the cell was small at 10 C rate neither using Super P Li or acetylene black as conductive agent, which maybe due to the the unsatisfactory bond performance of the PVDF binder.Comparing with the LiFePO4/Li half cell, the resistance of the full cell was smaller and the capacity retention was higher after 150 cycles at 1 C rate.3.We have used a water binder(SBR)and an oiline binder(PVDF)to make LiFePO4 cathode electrode, and aembled with lithium metal composing to LiFePO4Li lithium ion battery.Both of the water-based binder system and the oil-based binder system, the discharge voltage plateau(about 3.38 V)of the cell were stable and the discharge capacity were almostly the same at 0.2 C discharge rate, however, the water-based binder system was a little lower.While at the discharge rate of 1 C, in the water-based binder system, the first and second discharge capacity of the cell was higher than that of the oil-based binder system.From the results of the EIS and cycle life tests demonstrated that the cell with water-based binder system had a smaller resistance with Rct equates to 89.68Ωand had better capacity retention which was 65% after 150 cycles at 1 C
discharge rate.4.We had used two binders to aemble LiFePO4/HC full batteries, the initial discharge capacity of the cell with oil-based binder system was higher than the water-based binder system in the charge-discharge proce at 0.2 C rate.However, as cycles proceed, the discharge capacity of the cell with oil-based binder system was decreased, while, the discharge capacity of the cell with water-based binder system had a little increased.As the same as the results of LiFePO4/Li half cell tests, the discharge capacity of the cell with water-based binder system was higher than the cell with oil-based binder system, and its capacity retention was higher which was 97.9%.Rate performance test indicated that the cell with water-based binder system had a better rate performance.In addition, the water-based binder system had smaller resistance whose Rct was 5.08Ω, however, whatever the binder we used, the resistance of the LiFePO4/HC full cell was smaller than the LiFePO4/Li half cell.5 The rate performance of the cell using hard carbon as anode was better.When the cells charge-discharge cycling at 1 C rate, the initial discharge capacity of the LiFePO4/AGP-3 and LiFePO4/HC was 84.3% and 91.0% of the discharge capacity at 0.2 C rate.The discharge capacity of LiFePO4/AGP-3 cell was a little higher than
LiFePO4/HC cell at 1 C rate or 2 C rate, however, on the contrary, the discharge capacity of LiFePO4/HC was higher when charge-discharged at 5 C or 10 C rate.6.The resistance was almost the same when using hard carbon or graphite as anode, and the resistance of LiFePO4/HC was a little lower.The cycle life of LiFePO4/HC cell was longer than that of LiFePO4/HC cell, besides, the cycle life of the LiFePO4/HC full cell was longer than the LiFePO4/Li and HC/Li half cell, with its discharge capacity retention of 60% after 2450 cycles at 10 C rate.【关键词】锂离子电池 磷酸亚铁锂 硬碳 导电剂 粘结剂 【英文关键词】lithium ion battery lithium iron phosphate hard carbon conductive agent binder 【目录】磷酸亚铁锂/硬碳锂离子电池的工艺及电化学性能研究摘要3-511-3911-12
ABSTRACT5-7
第1章 绪论1.1 引言111.2 锂离子电池的发展历程
1.4 1.3 锂离子电池的结构与工作原理12-14锂离子电池正极材料的研究进展14-32极材料的选择要求15-17料19-22材料23-32
14-15
1.4.1 锂离子电池正
1.4.2 钴系正极材料
1.4.4 锰系正极材1.4.6 铁系正极1.4.3 镍系正极材料17-191.4.5 钒系正极材料22-23
1.5 锂离子电池负极极材料的研究进展
32-3534-351.5.1 碳材料32-341.5.2 金属氧化物
1.7 1.6 锂离子电池导电剂的研究进展35-36锂离子电池粘结剂的研究进展36-37目的和内容37-38
1.8 本论文的主要研究
第2
1.9 本论文的创新之处38-39
2.1 实验试剂章 实验试剂与方法及原理39-4839-40组装40-42备4142-442.2 实验主要仪器40
2.3 电极的制备及电池的2.3.2 负极的制
2.3.1 正极的制备40-412.3.3 电池的组装41-422.4.1 扫描电子显微镜分析
2.4 物理性能表征42-43
2.4.2 透射
2.4.4 粒2.5.1 恒流
2.5.3 电子显微镜分析43径分析43-44
2.4.3 X射线衍射测试432.5 电化学性能测试
44-48充放电池测试44-46交流阻抗测试47-48
2.5.2 循环伏安测试46-47第3章 导电剂对LiFePO_4/Li及
3.1 引言483.2.1 负极极片的制备LiFePO_4/HC电池性能的影响48-61极片的制备及电池的组装48-494849
3.2 3.2.2 正极极片的制备48-493.3 LiFePO_4材料的表征49-51
3.2.3 电池的组装3.3.1 扫描电子显
3.3.3 3.4.1 不同
3.4.2 微镜分析49-50XRD测试50-51
3.3.2 透射电子显微镜分析503.4 电化学性能测试51-59导电剂对LiFePO_4/Li半电池电化学性能的影响51-56不同导电剂对LiFePO_4/HC全电池电化学性能的影响56-593.5 本章小结59-61
第4章 粘结剂对
LiFePO_4/Li及LiFePO_4/HC电池性能的影响61-74614.2 极片的制备及电池的组装
61-62
4.1 引言4.2.1 负极极4.2.3 电池片的制备61-62的组装6263-72
4.2.2 正极极片的制备624.3 材料的表征62-634.4 电化学性能测试4.4.1 不同粘结剂对LiFePO_4/Li半电池电化学性能
4.4.2 不同粘结剂对LiFePO_4/HC全电池电化
4.5 本章小结
72-74
第5章 的影响63-68学性能的影响68-72LiFePO_4/HC及LiFePO_4/AGP-3电池的电化学性能研究74-8574-765.1 引言74
5.2 材料的表征
74-75
5.2.2 透射5.3 电化学5.3.2 循环5.3.4 倍5.4 本5.2.1 扫描电子显微镜分析电子显微镜分析75-76性能测试76-83伏安测试79-80率性能测试81-82章小结83-8585-8688-100
5.2.3 粒径分析76
76-79
5.3.1 充放电测试
5.3.3 交流阻抗测试80-815.3.5 循环寿命测试82-83第6章 结论与展望
85-87
6.1 结论参考文献6.2 展望86-87致谢87-88
攻读学位期间的研究成果
先进锂离子电池正极材料LiFePO4的研究进展2010年01月26日 作者:陈东 关勇辉 陈苗 戴扬 刘辉 来源:《中国电源博览》第104期 编辑:李远芳摘要:锂离子电池大型化应用的主要障碍包......
磷酸铁锂材料的优点不再赘述,确实是一种非常有前途的正极材料,但也存在致命的缺点,这里主要谈一下磷酸铁锂的主要缺点:1、电子电导率se低,在10-9s/cm量级;离子传输率si低,在10-11s/......
磷酸铁锂电池内阻偏大的原因总结工艺方面1、正极配料导电剂过少(材料与材料之间导电性不好,因为锂钴本身的导电性非常差)。2、正极配料粘结剂过多(粘结剂一般都是高分子材料,绝缘......
锂离子电池负极材料的研究现状、发展及产业化作者: userhung发布日期: 2008-09-08锂离子电池(Lithium Ion Battery,简称LIB) 是继镍镉电池、镍氢电池之后的第三代小型蓄电池......
刀豆文库小编为你整合推荐3篇工艺设计原则及方法研究论文,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......