化学与技术_化学与技术专业

其他范文 时间:2020-02-27 13:57:15 收藏本文下载本文
【www.daodoc.com - 其他范文】

化学与技术由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“化学与技术专业”。

化学与技术

工业三废

“工业三废”是指工业生产所排放的“废水、废渣、废气”。

“工业三废”中含有多种有毒、有害物质,若不经妥善处理,如未达到规定的排放标准而排放到环境(大气、水域、土壤)中,超过环境自净能力的容许量,就对环境产生了污染,破坏生态平衡和自然资源,影响工农业生产和人民健康,污染物在环境中发生物理的和化学的变化后就又产生了新的物质。好多都是对人的健康有危害的。这些物质通过不同的途径(呼吸道、消化道、皮肤)进入人的体内,有的直接产生危害,有的还有蓄积作用,会更加严重的危害人的健康。不同物质会有不同影响。

硫酸工业

基本无机化工之一。主要产品有浓硫酸、稀硫酸、发烟硫酸、液体三氧化硫、蓄电池硫酸等,也生产高浓度发烟硫酸、液体二氧化硫、亚硫酸铵等产品。

硫酸广泛用于各个工业部门,主要有化肥工业、冶金工业、石油工业、机械工业、医药工业、洗涤剂的生产、军事工业、原子能工业和航天工业等。还用于生产染料、农药、化学纤维、塑料、涂料,以及各种基本有机和无机化工产品。早期的硫酸工业都采用硝化法,设备生产强度低,产品浓度只有60~76%。20世纪以来,硝化法逐渐被接触法所取代。

生产硫酸的原料有硫黄、硫铁矿、有色金属冶炼烟气、石膏、硫化氢、二氧化硫和废硫酸等。硫黄、硫铁矿和冶炼烟气是三种主要原料。

氮循环

氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。

氮在自然界中的循环转化过程。是生物圈内基本的物质循环之一。如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反覆循环,以至无穷。

构成陆地生态系统氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。

植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮。动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮。这一过程为生物体内有机氮的合成。动植物的遗体、排出物和残落物中的有机氮被微生物分解后形成氨,这一过程是氨化作用。在有氧的条件下,土壤中的氨或铵盐在硝化细菌的作用下最终氧化成硝酸盐,这一过程叫做硝化作用。氨化作用和硝化作用产生的无机氮,都能被植物吸收利用。在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程被称作反硝化作用。由此可见,由于微生物的活动,土壤已成为氮循环中最活跃的区域。

联合制碱法(侯氏制碱法)

NH3+CO2+H2O+NaCl=NH4Cl+NaHCO3↓(NaHCO3 因溶解度较小,故为沉淀,使反应得以进行)

2NaHCO3=Na2CO3+CO2↑+H2O(“=”上应有加热的符号)其要点是在索尔维制碱法的滤液中加入食盐固体,并在30 ℃~40 ℃下往滤液中通入氨气和二氧化碳气,使它达到饱和,然后冷却到10℃以下,根据 NH4Cl 在常温时的溶解度比 NaCl 大,而在低温下却比 NaCl 溶解度小的原理,结晶出氯化铵(一种化肥),其母液又可重新作为索尔维制碱法的制碱原料。

此法优点:保留了氨碱法的优点,消除了它的缺点,使食盐的利用率提高到 96 %; NH4Cl 可做氮肥;可与合成氨厂联合,使合成氨的原料气 CO 转化成 CO2,革除了 CaCO3 制 CO2 这一工序

侯德榜,名启荣,字致本,著名化学家,侯氏制碱法的创始人。

在中国化学工业史上,有一位杰出的科学家,他为祖国的化学工业事业奋斗终生,并以独创的制碱工艺闻名于世界,他就像一块坚硬的基石,托起了中国现代化学工业的大厦,这位先驱者就是被称为“国宝”的侯德榜曾以10科1000分的好成绩被北平清华留美预备学堂录取!

侯德榜一生在化工技术上有三大贡献:

第一:揭开了索尔维制碱法的秘密,并公布于世.第二:创立了中国人自己的制碱工艺--侯氏制碱法.第三:就是他为发展小化肥工业所做的贡献。著书《纯碱制造》

硬水 定义:含有较多钙镁物质的水是硬水.所谓“硬水”是指水中所溶的矿物质成分多,尤其是钙和镁。硬水并不对健康造成直接危害,但是会给生活带来很多麻烦,比如用水器具上结水垢、肥皂和清洁剂的洗涤效率减低等。

水的硬度:水中离子沉淀肥皂的能力,一般指水中Ca2+、Mg2+盐类的含量。单位mmol/L或mg/

包括:总硬度 碳酸盐硬度 非碳酸盐硬度

碳酸盐硬度(暂时硬度): 主要成分是钙、镁的酸式碳酸盐,其次是钙、镁的碳酸盐,由于这些盐类一经加热煮沸就会分解成为溶解度很小的碳酸盐,硬度大部分可以除去。

非碳酸盐硬度(永久硬度):表示水中的钙、镁的氯化物、硫酸盐、硝酸盐等盐类的含量,这些盐类经加热煮沸不会产生沉淀,使硬度不变化

软水

不含或含较少可溶性钙、镁化合物的水叫做软水(soft water)。软水不易与肥皂产生浮渣,而硬水相反。天然软水一般指江水、河水、湖(淡水湖)水。经软化处理的硬水指钙盐和镁盐含量降为 1.0~50 毫克/升后得到的软化水。虽然煮沸就可以将暂时硬水变为软水,但在工业上若采用此法来处理大量用水,则是极不经济的。

软水在软化过程中紧是硬度降低而含盐量不变。

离子交换

以离子交换剂上的可交换离子与液相中离子间发生交换为基础的分离方法。广泛采用人工合成的离子交换树脂作为离子交换剂,它是具有网状结构和可电离的活性基团的难溶性高分子电解质。根据树脂骨架上的活性基团的不同,可分为阳离子交换树脂、阴离子交换树脂、两性离子交换树脂、螯合树脂和氧化还原树脂等。用于离子交换分离的树脂要求具有不溶性、一定的交联度和溶胀作用,而且交换容量和稳定性要高。

离子交换反应是可逆的,而且等当量地进行。由实验得知,常温下稀溶液中阳离子交换势随离子电荷的增高,半径的增大而增大;高分子量的有机离子及金属络合阴离子具有很高的交换势。高极化度的离子如Ag+、Tl+等也有高的交换势。离子交换速度随树脂交联度的增大而降低,随颗粒的减小而增大。温度增高,浓度增大,交换反应速率也增快。

离子交换树脂可以再生。将交换耗竭的离子交换树脂和适当的酸、碱或盐溶液发生交换,使树脂转化为所需要的型式,叫做再生。这类酸、碱或盐就叫再生剂。设备 离子交换过程常在离子交换器中进行。离子交换器类似压力滤池,外壳为一钢罐;离子交换通常采用过滤方式,滤床由交换剂构成,底部为附有滤头的管系。

离子交换分离广泛用于:①水的软化、高纯水的制备、环境废水的净化。②溶液和物质的纯化,如铀的提取和纯化。③金属离子的分离、痕量离子的富集及干扰离子的除去。④抗菌素的提取和纯化等。

分馏:分离几种不同沸点的挥发性组分的混合物的一种方法;混合物先在最低沸点下蒸馏,直到蒸气温度上升前将蒸馏液作为一种成分加以收集。蒸气温度的上升表示混合物中的次一个较高沸点组分开始蒸馏。然后将这一组分开收集起来。

分馏是分离提纯液体有机混合物的沸点相差较小的组分的一种重要方法。石油就是用分馏来分离的。

分馏在常压下进行,获得低沸点馏分,然后在减压状况下进行,获得高沸点馏分。每个馏分中还含有多种化合物,可以再进一步分馏。

属于物理变化。

裂化(cracking):一种使烃类分子分裂为几个较小分子的反应过程。烃类分子可能在碳-碳键、碳-氢键、无机原子与碳或氢原子之间的键处分裂。在工业裂化过程中,主要发生的是前两类分裂。在我国,习惯上把从重质油生产汽油和柴油的过程称为裂化;而把从轻质油生产小分子烯烃和芳香烃的过程称为裂解。

煤干馏:

煤化工的重要过程之一。指煤在隔绝空气条件下加热、分解,生成焦炭(或半焦)、煤焦油、粗苯、煤气等产物的过程。按加热终温的不同,可分为三种:900~1100℃为高温干馏,即焦化;700~900℃为中温干馏;500~600℃为低温干馏。

煤干馏过程主要经历如下变化:当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。

煤干馏的产物是煤炭、煤焦油和煤气。

煤干馏产物的产率和组成取决于原料煤质、炉结构和加工条件(主要是温度和时间)。随着干馏终温的不同,煤干馏产品也不同。低温干馏固体产物为结构疏松的黑色半焦,煤气产率低,焦油产率高;高温干馏固体产物则为结构致密的银灰色焦炭,煤气产率高而焦油产率低。中温干馏产物的收率,则介于低温干馏和高温干馏之间。煤干馏过程中生成的煤气主要成分为氢气和甲烷,可作为燃料或化工原料。高温干馏主要用于生产冶金焦炭,所得的焦油为芳烃、杂环化合物的混合物,是工业上获得芳烃的重要来源;低温干馏煤焦油比高温焦油含有较多烷烃,是人造石油重要来源之一。

陶瓷(Ceramics),陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。由最粗糙的土器到最精细的精陶和瓷器都属于它的范围。对于它的主要原料是取之于自然界的硅酸盐矿物(如粘土、长石、石英等),因此与玻璃、水泥、搪瓷、耐火材料等工业,同属于“硅酸盐工业”的范畴。

玻璃:一种较为透明的固体物质,在熔融时形成连续网络结构,冷却过程中粘度逐渐增大并硬化而不结晶的硅酸盐类非金属材料。普通玻璃化学氧化物的组成(Na2O·CaO·6SiO2),主要成份是二氧化硅。广泛应用于建筑物,用来隔风透光。

中国古代亦称琉璃,是一种透明、强度及硬度颇高,不透气的物料。玻璃在日常环境中呈化学惰性,亦不会与生物起作用,故此用途非常广泛。玻璃一般不溶于酸(例外:氢氟酸与玻璃反应生成SiF4,从而导致玻璃的腐蚀);但溶於强碱,例如氢氧化铯。玻璃是一种非晶形过冷液体。融解的玻璃迅速冷却,各分子因为没有足够时间形成晶体而形成玻璃。

水泥:粉状水硬性无机胶凝材料。加水搅拌后成浆体,能在空气中硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结在一起。水泥是重要的建筑材料,用水泥制成的砂浆或混凝土,坚固耐久,广泛应用于土木建筑、水利、国防等工程。

水泥的生产工艺,以石灰石和粘土为主要原料,经破碎、配料、磨细制成生料,喂入水泥窑中煅烧成熟料,加入适量石膏(有时还掺加混合材料或外加剂)磨细而成。

无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。

在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。

无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷、非晶态材料、人工晶体、无机涂层、无机纤维等。

半导体:顾名思义:导电性能介于导体与绝缘体之间的材料,叫做半导体.

物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

一、太阳能发电方式太阳能发电有两种方式,一种是光-热-电转换方式,另一种是光-电直接转换方式。

(1)光-热-电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光-热转换过程;后一个过程是热-电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。

(2)光-电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光-电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的化肥:

用化学和(或)物理方法制成的含有一种或几种农作物生长需要的营养元素的肥料。化学肥料的简称。只含有一种可标明含量的营养元素的化肥称为单元肥料,如氮肥、磷肥、钾肥以及次要常量元素肥料和微量元素肥料。含有氮、磷、钾三种营养元素中的两种或三种且可标明其含量的化肥,称为复合肥料或混合肥料。化肥的有效组分在水中的溶解度通常是度量化肥有效性的标准。品位是化肥质量的主要指标,它是指化肥产品中有效营养元素或其氧化物的含量百分率,如:N、P2O5、K2O;CaO、MgO、S;B、Cu、Fe、Mn、Mo、Zn的百分含量。

作物营养元素和化肥分类

作物生长所需要的营养元素有16种。按作物生长需要量分两大类:常量营养元素和微量营养元素。常量营养元素又分为三类:一类是碳、氢、氧,作物能直接从空气和水中取得,这不属于肥料的范围;第二类氮、磷、钾,称主要常量营养元素,是化肥的主要内容;第三类钙、镁、硫,称为次要常量营养元素(中国习称中量营养元素),它们在一般土壤中不缺,所以不是重要的化肥内容。微量营养元素是硼、铜、铁、锰、钼、锌、氯等,其中的氯在土壤中不缺,在化肥中通常不讨论。

化肥一般是无机化合物,虽然尿素等是有机化合物,但习惯上,将化肥常称作无机肥料;又由于生产化肥的原料多是天然矿物,所以化肥又称矿物肥料。含有作物营养元素的天然有机废物称为有机肥料或天然肥料,这不属于化肥范围。凡只含一种可标明含量的营养元素的化肥称为单元肥料,它们是氮肥、磷肥、钾肥以及次要常量元素肥料(中国习称中量元素肥料)和微量元素肥料。凡含有氮、磷、钾三种营养元素中的两种或三种且可标明其含量的化肥,称为或混合肥料。

对作物有效性评价

化肥的有效组分在水中的溶解度通常是度量化肥有效性的标准。但化肥施入土壤后,其组分与土壤发生复杂的反应,有些化肥的组分在水中的溶解度不大,却对作物有良好的效果,所以也可选用其他溶剂来度量化肥对作物的有效性。各国规定的溶剂种类和标准并不一致。多数氮肥和钾肥易溶于水,它们的有效性主要以其在水中的溶解度来度量,只有例外。由于不少磷肥组分在水中的溶解度很小,因此磷肥除用在水中的溶解度外,还用中性枸橼酸铵、碱性枸橼酸铵、2%枸橼酸或甲酸溶液来评价其有效性。但是,所有这些度量化肥有效性的评价方法和标准,只不过是在实验室里模拟作物根系土壤条件的相对方法,化肥对作物的真实有效性,还需要通过农业肥效试验结果来确定。

化肥的质量 各国政府一般都订有化肥质量管理条例和产品标准,规定化肥的主要质量指标并且标志在包装物上。品位是化肥质量的主要指标。它是指化肥产品中有效营养元素或其氧化物的含量百分率,如:N、PO、KO;CaO、MgO、S;B、Cu、Fe、Mn、Mo、Zn的百分含量。化肥质量的其他内容是它们的物理性质,包括流动性(与结块、含湿量等有关的性质)均匀性(包括颗粒大小)和起尘性等。在化肥市场上,化肥的这些质量内容一般缺少定量的指标,而是用户在使用中直接观察到的。

农药简介:

为保障促进作物的成长,所施用的杀虫、除草等药物的统称。

农业上用于防治病虫以及调节植物生长、除草等药剂。

根据防治对象,可分为杀虫剂、杀菌剂、杀螨剂、杀线虫剂、杀鼠剂、除草剂、脱叶剂、植物生长调节剂等。

根据原料来源可分为有机农药、无机农药、植物性农药、微生物农药。此外,还有昆虫激素。

根据加工剂型可分为粉剂、可湿性粉剂、可溶性粉剂、乳剂、乳油、浓乳剂、乳膏、糊剂、胶体剂、熏烟剂、熏蒸剂、烟雾剂、油剂、颗粒剂、微粒剂等。

大多数是液体或固体,少数是气体。

根据害虫或病害的各类以及农药本身物理性质的不同,采用不同的用法。如制成粉末撒布,制成水溶液、悬浮液、乳浊液喷射,或使成蒸气或气体熏蒸等。

绿色化学:

按照美国《绿色化学》(GreenChemistry)杂志的定义,绿色化学是指:在制造和应用化学产品时应有效利用(最好可再生)原料,消除废物和避免使用有毒的和危险的试剂和溶剂。

今天的绿色化学是指能够保护环境的化学技术.它可通过使用自然能源,避免给环境造成负担、避免排放有害物质.利用太阳能为目的的光触媒和氢能源的制造和储藏技术的开发,并考虑节能、节省资源、减少废弃物排放量

传统的化学工业给环境带来的污染已十分严重,目前全世界每年产生的有害废物达3亿吨~4亿吨,给环境造成危害,并威胁着人类的生存。化学工业能否生产 出对环境无害的化学品?甚至开发出不产生废物的工艺?有识之士提出了绿色化学的号召,并立即得到了全世界的积极响应。

绿色化学又称环境友好化学、环境无害化学、清洁化学,是用化学的技术和方法去减少或消除有害物质的生产和使用。

绿色化学的核心是:

利用化学原理从源头上减少和消除工业生产对环境的污染。

按照绿色化学的原则、在理想的化工生产方式是:

反应物的原子全部转化为期望的最终产物。

绿色化学的主要特点是:

1.充分利用资源和能源,采用无毒、无害的原料;

2.在无毒、无害的条件下进行反应,以减少向环境排放废物;

3.提高原子的利用率,力图使所有作为原料的原子都被产品所消纳,实现“零排放”;

4.生产出有利于环境保护、社区安全和人体健康的环境友好的产品。

原子经济性:

原子经济性是绿色化学以及化学反应的一个专有名词。

绿色化学的“原子经济性”是指,在化学品合成过程中,合成方法和工艺应被设计成能把反应过程中所用的所有原材料尽可能多的转化到最终产物中。

化学反应的“原子经济性”(Atom economy)概念是绿色化学的核心内容之一,最早由美国斯坦福大学的B.M.Trost教授提出,他针对传统上一般仅用经济性来衡量化学工艺是否可行的做法,明确指出应该用一种新的标准来评估化学工艺过程,即选择性和原子经济性,原子经济性考虑的是在化学反应中究竟有多少原料的原子进入到了产品之中,这一标准既要求尽可能地节约不可再生资源,又要求最大限度地减少废弃物排放。理想的原子经济反应是原料分子中的原子百分之百地转变成产物,不产生副产物或废物,实现废物的“零排放”(Zero emiion)。“原子经济性”的概念目前也被普遍承认。B.M.Trost获得1998年美国“总统绿色化学挑战奖”的学术奖。

原子经济反应是原子经济性的现实体现。理想的原子经济性的反应应该是原料分子中的原子百分之百地转变成产物,不需要附加,或仅仅需要无损耗的促进剂,即催化剂,达到零排放(zero emiion)。

如:A + B=C

原子经济反应是最大限度利用资源、最大限度减少污染的必要条件,但不是充分条件。这是因为某些化学反应中:

1,反应平衡转化率很低,反应物与产物分离困难,反应物难于循环使用;

2,生产目标产物的反应是原子经济的,但反应物还能同时发生其他平行反应,生产不需要的副产物。

反应的原子经济性、高转化率、高选择性是实现资源合理利用、避免污染缺一不可的。

化学反应的“原子经济性”则是指在化学反应中究竟有多少原料的原子进入到产品之中。我们常用原子利用率来衡量化学过程的原子经济性。在合成反应中,要减少废物排放的关键是提高目标产物的选择性和原子利用率,即化学反应中,到底有多少反应物的原子转变到了目标产物中。

原子利用率的定义是目标产物的占反应物总量的百分比。即原子利用率=(预期产物的分子量/全部生成物的分子量总和)×100%

用原子利用率可以衡量在一个化学反应中,生产一定量目标产物到底会生成多少废物。在化学反应中,一旦要利用的化学反应计量式被确定下来,则其最大原子利用率也就确定了。

一般状况下,重排反应和加成反应的原子经济性最高,为100%。其他类型反应院子经济性则较低。

原子利用率达到100%的反应有两个最大的特点:

1,最大限度地利用了反应原料,最大限度地节约了资源;

2,最大限度地减少了废物排放(“零废物排放”),因而最大限度地减少了环境污染,或者说从源头上消除了由化学反应副产物引起的污染。

表面处理的概念:

在基体材料表面上人工形成一层与基体的机械、物理和化学性能不同的表层的工艺方法。表面处理的目的是满足产品的耐蚀性、耐磨性、装饰或其他特种功能要求。

对于金属铸件,我们比较常用的表面处理方法是,机械打磨,化学处理,表面热处理,喷涂表面。

多媒体技术与化学教学

多媒体技术与化学教学“随着信息技术的高速发展,多媒体以其声、情、图、像并茂并且生动、形象的优势逐渐走入了课堂,给传统的教学、教育注入了新的活力,而多媒体在教学中的应用......

《化学与技术》化学工业知识点归纳

化学工业知识点归纳有关"化学工业"主要知识点有:合成氨工业、合成硫酸、氯碱工业的生产原理、设备、生产流程、尾气的吸收与处理,除要考虑生产流程、原料用量、价格,同时还要考虑......

化学螺栓技术要求

化学螺栓规格及重要节点一、安装程序安装程序:钻孔——清孔——置入药剂管——钻入螺栓——凝胶过程——硬化过程——固定物体1、钻孔:先根据设计要求,按图纸间距、边距定好位......

电厂化学化学技术问答

化学技术问答 一.选择题:1燃烧需要的三个条件是(C)。A 燃烧、空气、锅炉; B可燃物质、催化剂、氧气;C 可燃烧的物质、助燃的氧气、足够高的温度;D 锅炉、风机、燃煤。2由于试剂不纯......

电厂化学技术复习题

一、阳(阴)离子交换树脂具有一定的选择性,通过阳(阴)性树脂对常见阳(阴)离子选择顺序的比较可知,对钠(硅酸根)离子的选择性最差,由此可知,如果出水中钠(硅酸根)离子含量超过规定值即可断定......

下载化学与技术word格式文档
下载化学与技术.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文