面面平行的证明由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“证明面面平行”。
面面平行的证明
判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
反证:记其中一个平面内的两条相交直线为a,b。假设这两个平面不平行,设交线为l,则a∥l(过平面外一条与平面平行的直线的平面与该平面的交线平行于该直线),b∥l,则a∥b,与a,b相交矛盾,故假设不成立,所以这两个平面平行。
2证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.3用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
4【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个
5用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
6证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个
5用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
怎么证明面面平行线面垂直:1.一条线与平面内两条相交直线垂直2.一条线在一个平面内,而这个平面与另外一个平面垂直,那么这条线与另外一个平面垂直面面垂直:一条线与平面内两条相......
面面平行一.知识与方法:1.面面平行定义:无公共点2.面面平行判定定理:一平面上的两条相交直线都平行于另一个平面,则两平面平行。 推论1:若一平面上两条相交直线分别平行于另一......
面面平行的判定和性质一、内容提要1.两个平面的位置关系:(1)平行:没有公共点;(2) 相交:有无数个公共点,且这些公共点的集合是一条直线。2.两个平面平行的判定定理表述为:4.两个平面平......
证明面面平行的方法利用向量方法判断空间位置关系,其难点是线面平行与面面垂直关系问题.应用下面的两个定理,将可建立一种简单的程序化的解题模式.定理1设MA→、MB→不共线,......
怎样证明面面平行线线平行→线面平行如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。线面平行→线线平行如果一条直线和一个平面平行,经过这条直......