2.2 直接证明与间接证明 教学设计 教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“证明教案教学设计”。
教学准备
1.教学目标
1.知识与技能
(1)了解直接证明的两种基本方法:综合法和分析法.(2)了解综合法和分析法的思维过程和特点. 2.过程与方法
(1)通过对实例的分析、归纳与总结,增强学生的理性思维能力.
(2)通过实际演练,使学生体会证明的必要性,并增强他们分析问题、解决问题的能力.
3.情感、态度及价值观
通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力.
2.教学重点/难点
重点:综合法和分析法的思维过程及特点。难点:综合法和分析法的应用。
3.教学用具
多媒体、板书
4.标签
教学过程
1.和
是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式.
2.综合法是从
出发,经过,最后达到待证结论.
3.分析法是从
出发,一步一步寻求结论成立的________,最后达到题设的已知条件,或已被证明的事实.答案:综合法分析法 已知条件 逐步的推理 待证结论 充分条件
【复习引入】
【师】证明对我们来说并不陌生,我们在上一节学习的合情推理,所得的结论的正确性就是要证明的,并且我们在以前的学习中,积累了较多的证明数学问题的经验,但这些经验是零散的、不系统的,这一节我们将通过熟悉的数学实例,对证明数学问题的方法形成较完整的认识。合情推理分为归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法——直接证明与间接证明。今天我们先学习直接证明。
新知探究
一、综合法
1、引例探究
证明下列问题:已知a,b>0,求证: 问题1:其左右两边的结构有什么特点?
【生】右边是3个数a,b,c的乘积的4倍,左边为两项之和,其中每一项都是一个数与另两个数的平方和之积.问题2:利用哪个知识点可以沟通两个数的平方和与这两个数的积的不等关系? 【生】基本不等式 问题3:步骤上应该怎么处理? 【解答过程】 证明 因为:所以因为所以因此
问题4:讨论上述证明形式有什么特点?
【生】充分讨论,思考,找出以上问题的证明方法的特点
2、形成概念
1.定义:从命题的条件出发,利用定义、公理、定理及运算法则,经过一系列的推理论证,最后推导出所要证明的结论成立.2.思维特点:由因导果,即由知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。
3.框图表示:(P表示已知条件、已有的定义、定理、公理等,Q表示要证明的结论)
3、应用举例
例1在△ABC中,三个内角A,B,C的对边分别为a, b,c,且A,B,C成等差数列, a, b,c成等比数列,求证△ABC为等边三角形.【问题启发】
1、本题中涉及到哪几块知识?
2、从这些已知条件,可以得到什么结论?
3、怎样把它们转化为三角形中边角关系?
【分析】本题注意三个问题:首先将文字语言转化为符号语言;同时注意边角关系的转化;同时注意挖掘题中的隐含条件(内角和为)【规范解答】
证明:由 A,B, C成等差数列,有 2B=A + C .
因为A,B,C为△ABC的内角,所以A + B + C=
.
由①②,得B=.由a, b,c成等比数列,有由余弦定理及③,可得
.再由④,得,因此...从而A=C.由②③⑤,得 A=B=C=
所以△ABC为等边三角形. 【小结】综合法的证明步骤如下:
(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等;
(2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程.
二、分析法
1、引例探究 证明下列问题:求证:
问题1:讨论:能用综合法证明吗? 【生】不好处理
问题2:如果从结论出发,是否能寻找结论成立的充分条件? 【生】可以
问题3:步骤上应该怎么处理? 【解答过程】 证明:因为所以要证只需证展开得 只需证 只需证因为 显然成立
都是正数,所以
问题4:讨论上述证明形式有什么特点?
【生】(让充分讨论,思考,找出以上问题的证明方法的特点。)
【师】在本例中,如果我们从“21
2、形成概念
1.定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判断一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
2.思维特点:执果索因,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法。
3.框图表示:(用Q表示要证明的结论,Pn表示充分条件)
4.分析法的书写格式:
3、应用举例 例2在锐角【问题启发】
1、有直接可以化简的公式吗? 中,求证:
2、可以运用什么思想处理正切?(切弦互化)
3、最终可以用哪个公式来处理此题?
【分析】本题中如果只站在切的角度很难处理,所以我们用到了切化弦,毕竟弦的公式涉及的也多一些,我们平常也跟熟悉一些。然后运用分析法结合我们所需要证的目标来达成。【规范解答】 证明:要证明只需证
为钝角
恒成立
因为A、B为锐角,所以只需证只需证因为C为锐角,所以所以【小结】分析法要注意怎样处理好书写的格式,一般是从结论入手“要证—只需证—而某某结论显然成立”这种格式。
三、综合法与分析法的综合应用
【师】问题1:请同学们总结一下综合法的特点? 【生】
1、综合法证明是证明题中常用的方法。从条件入手,根据公理、定义、定理等推出要证的结论。
2、综合法证明题时要注意,要先作语言的转换,如把文字语言转化为符号语言,或把符号语言转化为图形语言等。还要通过细致的分析,把其中的隐含条件明确表示出来。
3、综合法可用于证明与函数、三角、数列、不等式、向量、立体几何、解析几何等有关的问题。
【师】问题2:请同学们总结一下分析法的特点? 【生】
1、分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知p1p2,直到所有的已知P都成立;
2、分析证明题时要同样注意,要先作语言的转换,如把文字语言转化为符号语言,或把符号语言转化为图形语言等。
3、分析法也常用于证明与函数、三角、数列、不等式、向量、立体几何、解析几何等有关的问题
【师】问题3:请同学们思考如果既要对一个题目做到既要好分析,又要好写步骤应该怎样处理? 【生】比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径.(可以用在草纸用分析法,在卷面上用综合法)例3.已知
【小结】 用P表示已知条件、定义、定理、公理等,用Q表示要证明的结论,则综合法和分析法的综合应用可用框图表示为:
课堂小结
1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因. 2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语. 3.在解题时,往往把综合法和分析法结合起来使用.课后习题 1.下列表述:
①综合法是由因导果法; ②综合法是顺推法; ③分析法是执果索因法; ④分析法是间接证明法; ⑤分析法是逆推法. 其中正确的语句有
()A.2个
B.3个C.4个
D.5个
板书
乡宁三中高中部“自主、互助、检测”大学堂学案数学选修2-22014 年3月4日 课题:直接证明与间接证明主备人:安辉燕参与人:高二数学组1112.①已知a,b,cR,abc1,求证:9.abc②已知a,b,m都......
8.2 直接证明与间接证明教学目标:重点:综合法,分析法与反证法的运用.难点:分析法和综合法的综合应用.能力点:能用三种方法解决简单的证明问题及三种证明方法的综合应用.教育点:体会数......
博兴二中2013届高三一轮复习文科数学学案姓名:班级:使用时间:课题:§9直接证明与间接证明主备人:审核人:二、间接证明反证法:假设原命题即在原命题的条件下,结论不成立),经过正确的推......
第2讲 直接证明与间接证明【2013年高考会这样考】1.在历年的高考中,证明方法是常考内容,考查的主要方式是对它们原理的理解和用法.难度多为中档题,也有高档题.2.从考查形式上看,主要......
教学准备1. 教学目标一.知识与技能目标(1)了解直接证明的两种基本方法:综合法和分析法. (2)了解综合法和分析法的思维过程和特点. 二.过程与方法目标(1)通过对实例的分析、归纳与总结,增......