线面、面面平行习题由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“线面面面平行习题”。
线面、面面平行习题课
三、例题精讲
题型
1、线面平行判定定理,线面平行性质定理
线线平行 线面平行
例
1、(线线平行 →线面平行→线线平行)
解:已知直线a∥平面,直线a∥平面,平面平面=b,求证a//b.
证法一: 经过a作两个平面和,与平面和分别相交于直线c和d,aa//c c同理:a//da//
c//ddc//ccbc//ba//ba//c
证法二:经过a作一平面π,使得平面π∩面=k,面π∩面=l.aa// k k同理:a// la//
a// l// k
又∵三个平面α、、π两两相交,交线分别为k、l、b且k∥l,∴k∥l∥b,则a∥b.证法三:在b上任取一点A,过A和直线a作平面和平面α相交于l1,和平面相交于直线l2.aa// l1 l1同理:a// l2a//
a// l1// l
2∵过一点只能作一条直线与另一直线平行,∴l1与l2重合.又∵l1面α,l2面,∴l1与l2重合于b.∴a∥b.点拨:证明直线与直线平行,有下列方法:(1)若a,bα,且a∩b=,则a∥b;(2)若α∩β=a,β∩γ=b,γ∩α=c且a∥b∥c;(3)若a∥b,b∥c,则a∥c;(4)若a∥α;aβ,α∩β=b,则a∥b.C
1例
2、(线线平行→线面平行→线线平行→线面平行)证法一:连结AC、AC11,A
1长方体中A1A//C1CAC11//AC
AC面A1C1C
A1C1面A1C1
A BAC//面A1C1B
AC
面ACP
A1BPAM 面ACP面A1C1BMN
PCBCN1AC//MN
MN面ABCDMN//面ABCD
AC面ABCD
证法二:利用相似三角形对应边成比例及平行线分线段成比例的性质。∽PMPB
AA1M PBM MAAA1
∽ A1PNPB
PBNCCN 1
NCCC1
CC1AA1
PMPN
AC//MN
MANCMN//面
ABCDMN面ABCD
AC面ABCD
点拨:证明直线和平面平行的方法有:①利用定义采用反证法;②判定定理:利用线线平行,证线面平行;③利用面面平行,证线面平行.其中主要方法是②、③两法,在使用判定定理时关键是确定出面内的与面外直线平行的直线.例3.(线线平行→线面平行→面面平行)
证明:(1)分别连结B1D1、ED、FB,如答图9-3-3,C
1C
E、F分别是D1C1和B1C1的中点B1D1.2
正方体性质得B1D1//BD
EFBD.唯一平面,EF,BD
∴E、F、B、D共面.(2)连结A1C1交MN于P点,交EF于点Q,连结AC交BD于点O,分别连结PA、QO.M、N为A1B1、A1D1的中点MN//EF
EF面EFBDMN面EFBD.
MN面EFBD
O四边形PAOQ为平行四边形PA//OQ
OQ平面EFBDPA//面EFBD.
PA平面EFBD
PAMNP
PA、MN面AMN
平面AMN平面EFBD.例4.(线线平行→线面平行→面面平行→线面平行)证法一:作FH∥AD交AB于H,连结HE.
BC
ADBFBH
FH//ADBDBA
BF=B1E,BD=AB1
B1EBHEH//B1B
AB1BA
B1B平面BB1C1CEH//平面BB1C1C
EH平面BB1C1CEHFH=H
EH、FH平面FHE平面FHE//平面BB1C1C
EF//平面BB1C1C
EF平面FHEBC
1AD//BC
FH//BC
FH//AD
BC面BB1C1CFH//平面BB1C1C FH面BB1C1C
B1C1
D1
A1
证法二:(线线平行→线面平行)
A1
D1
连AF延长交BC于M,连结B1M.AD//BC
AFDF
AFD∽MFB
FMBF
BD=B1A
DF=AE
BE=BF1
AFAE
FMB1E
EF//B1M
B1M平面BB1C1CEF//平面BB1C1CEF平面BB1C1C
说明:证法一证线面平行,先证面面平行,然后说明直线在其中一个平面
内.证法二则是用了证线面平行,先证线线平行.例5.(面面平行→线线平行)
证明: 过A作直线AH//DF, 连结AD,GE,HF(如图).AH//m平面,AAH,mAD,GE,HF
lAHA平面',l,AH'GB,HC'
GE
AD,GE,HF
'GB,'HC
////
ABAGmlBG//CH ABDEBCGH BCEFAD//GE//HFAGDE、GHEF
例6.(线线平行→面面平行)证明:根据每相邻的两边互相垂直,边长均为a,A且AA1//CC1,将图形补成正方体,如图。则,B
C
只需在正方体中,证明面ABC//面A1B1C1即可。
A
1连接AC,AC11.正方体AB//B1C1且BC//A1B1
ABBCB,B1C1A1B1B1
AB,BC面ABC, A1B1,B1C面A1B1C面ABC//面A1B1C1
C1
B1
四、综合练习
1.证明:
证法一:(线线平行→线面平行(构造平行四边形))
如图(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN。
面ABCD面ABEFABAEDB
APDQ
PEQB
PMQN
AB//QN
ABDCPMPE
PM//AB
ABAE
//
PM QN四边形PMNQ为平行四边形PQ//MN
MN面BCEPQ//面BCEPQ面BCE
证法二:(线线平行→线面平行(构造三角形,利用平行线段比,三角形相似比))
如图(2),连结AQ并延长交BC或BC的延长线于点K,连结EK.
面ABCD面ABEFABAEDB
APDQ
AQAPPQ//EKQKPE
EK面BCEPQ//面BCEPQ面BCE
AD//BC
证法三:(面面平行→线面平行)
如图(1),过PM∥BE交AB于M,连接MQ。
APAM
AEAB
面ABCD面ABEFABAEDBAPDQ
PM//BE
DQAQ
QBQK
A
M
F
P
B
D
Q
C
E
3
DQAM
MQ//ADDBABMQ//BC
AD//BC
PM//BEPMMQM,BEBCB
PM、MQ面PMQ,BE、BC面BCE
面PMQ
PM
2.证明:
GDGHGHEHA
HAC∥BD
ACBDBF
BFHB16
AEHA28
SAECSBFD
ACAEsinA
373
1744BFBDsinB2∴ SBFD96
3.证明:如答图9-3-2,连结AC交BD于点O.连结OQ
ABCD是平行四边形AOOC
PQ=PA
OQ是APC的中位线PC//OQ
PC面BDQ,OQ面BDQPC//平面BDQ.4.证明:连BF交CD于H,连PH
CFHF
AB//CDABF∽CFHFAFB
PECF
EBFA
PEHFEF//PH
EF// EBFB
EF面PCD,PH面PCD
高考资源网(ks5u.com)您身边的高考专家第2讲直线与平面平行、平面与平面平行一、选择题1.已知三条直线a、b、c和平面β,则下列推论中正确的是()A.若a∥b,b⊂β,则a∥βB.若a、b与......
线面,面面平行证明一.线面平行的判定1.定义:直线和平面没有公共点,则直线和平面平行.2.判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.3.符号表示为:a,......
连南民族高级中学“学案导学”课堂教学活页学案执笔人:王多涛审阅人:高一数学组时间:09年12月6日连南民族高级中学“学案导学”课堂教学活页学案执笔人:王多涛审阅人:高一数学......
55讲直线与平面平行和平面与平面平行直线与平面平行【例1】如图,正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.【证明】方法1:如图,作ME//BC,交BB于E,作NF/......
必修22.2.3—2.2.4直线与平面平行及平面与平面平行的性质多听、多思、多做,成功就在那里等你。2.2.3-2.2.4直线与平面平行及平面与平面平行的性质【学习目标】1、探究直线与......