面面平行判定(导学案)_面面平行的判定导学案

其他范文 时间:2020-02-29 07:21:15 收藏本文下载本文
【www.daodoc.com - 其他范文】

面面平行判定(导学案)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“面面平行的判定导学案”。

2.2.2平面与平面平行的判定(导学案)

编制人:lh

学习目标:

1.知识与技能:理解并掌握平面与平面平行的判定定理及应用

2.过程与方法:通过感知、举例、类比、探究、归纳出判定定理

3.情感价值观:进一步陪养解决空间问题平面化的思想

学习重点:平面与平面平行的判定 学习难点:面面平行判定定理的应用

一、复习与思考

1.我们学习过两种判断线面平行的方法:

(1)定义法:

(2)直线与平面平行的判定定理:

条件:关键:

思想:

找平行线的方法有:

2.两个平面有几种位置关系?请画图说明:

3.观察你的周围,请举出面面平行的具体例子:

二、合作探究

问题

1提示:将面面平行转化为......问题2思考在下列4种情况下,α∥β是否成立。(请举例说明理由)

(1).若平面α内有一条直线a平行于平面β,能保证α∥β吗?

(2).若平面α内有两条直线a、b都平行于平面β,能保证α∥β吗?

-“学习的三大要素是接触、综合分析、实际参与。”-----名人名言

(3).如果平面α内的无数条直线都平行于平面β,则α∥β吗?

(4).如果平面α内的任意直线都平行于平面β,则α∥β吗?

三、面面平行的判定定理

根据探究结果,对照线面平行的判定定理,请尝试归纳出面面平行的判定定理: 定理内容:图形表示

符号表示:

简述为:

定理再理解

1.正确运用定理需要

2.定理用到的数学思想:

3.运用定理的关键是:

四、定理的应用

定理初应用

例1如图:三棱锥P-ABC,D,E,F分别是棱PA,PB,PC中点,求证:平面DEF∥平面ABC。D

E

A

B

变式1:若把例1中的“D,E,F分别是棱PA,PB,PC中点”改为“

结论是否依旧成立?请口述原因。

F C PDDAPEEBPFFC”,定理再应用

例2在正方体ABCD-A1B1C1D1中.求证:平面AB1D1∥平面C1BD.D

1A1

D C1 1 C

变式2:若把例2中的“正方体”改为“长方体”,结论是否依旧成立?请口述原因。

方法小结(请总结出证明两个平面平行的一般步骤):

五、达标检测

1.已知α、β是两个平面,在下列条件中,可判断α∥β的是()

(A).l,m,l//,m//(B).l,m,l//m

(C).l//,m//,l//m(D).l,m异面,l ,m,l//,m// 2.已知直线a//平面,过直线a作平面,使//,这样的,()

(A).只能作一个(B).至少可以作一个(C).不存在(D).至多可以作一个

3.已知α∥β,a,b,则a与b的位置关系是()

(A).平行(B).异面(C).相交(D).平行或异面

4.已知正方体ABCD-A1B1C1D1,P,Q,R,分别为A1A,AB,AD的中点。

求证:平面PQR∥平面CB1D1.Q

六、小结与反思

1.通过本节课的学习,判断平面与平面平行的方法有:

2.应用判定定理判定面面平行时应注意:

3.应用判定定理判定线面平行的关键:

4.找平行线的方法有:

5.本节课我们用到的数学思想与方法:

学案 面面平行的判定

平面与平面平行的判定一、学习目标:1、理解平面与平面平行的判定定理的含义,会用定理证明面面平行。2、会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理。......

面面平行的判定学案

平面与平面平行的判定学案一、复习引入:问题1:空间两个平面有几种位置关系?问题2:如何来定义两个平面相交和平行?二、探索学习:探究(一):平面与平面平行的背景分析思考:假定平面//,那......

面面平行的判定

平面与平面平行的判定一、教学目标:1.理解并掌握平面与平面平行的判定定理;2.培养学生观察、发现的能力和空间想象能力;3.让学生了解空间与平面互换的数学思想.二、重难点:重点:......

线面平行判定导学案

线面平行的判定导学案一、教学目标:1、知识与技能(1)理解并掌握直线与平面平行的判定定理;(2)能应用定理证明简单的线面平行问题。2、过程与方法学生通过观察图形,借助已有知识,掌握......

2.2.1线面面面平行判定

连南民族高级中学“学案导学”课堂教学活页学案执笔人:王多涛审阅人:高一数学组时间:09年12月6日连南民族高级中学“学案导学”课堂教学活页学案执笔人:王多涛审阅人:高一数学......

下载面面平行判定(导学案)word格式文档
下载面面平行判定(导学案).doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文